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Introduction

The purpose of this thesis is to give an exposition of the computation of the Picard group of the
moduli stack of elliptic curves.

LetM1,1,S denote the fibered category over (Sch/S ), whose objects are collections of data (T, (E, e)),
where T is a S-scheme and (E, e) is an elliptic curve over T , and whose maps are suitable morphisms.
M1,1,S is an algebraic stack, with respect to the fpqc topology.

In 1965 David Mumford proved that the Picard group of the moduli space M1,1,k is equal to
Z/12Z, where k is a field of characteristic not 2 or 3 [Mum65].

In 2010 William Fulton and Martin Olsson supplemented the previous exceptional work of Mumford
with the article "The Picard group of M1,1" [FO10]. The work of the thesis is completely inspired
by this article. The authors have the double merit of having revisited Mumford’s previous results in
the more modern stack language and of having generalized the proof to a general base scheme S. In
particular, the main theorem proved is the following.

Theorem 0.0.1. Let S be a connected scheme. Then the map

Z/12Z× Pic(A1
S) −→ Pic(M1,1,S)

(i,L) 7→ λ⊗i ⊗ p∗L
(1)

is an isomorphism if either of the following hold:

(i) S is a Z[1/2]-scheme.

(ii) S is reduced.

The line bundle λ is the well-known Hodge bundle. The morphism

ρ :M1,1,S → A1
S

is the map induced by the j-invariant which makes A1
S into the coarse moduli space of the stack

M1,1,S .
The outline of this thesis is as follows. In chapter 1 we recall some basic notions in algebraic

geometry, such as Grothendieck topologies, fiber categories and the fundamental tool of descent. Only
after doing this, we describe the objects we will work with in this thesis, that is the algebraic stacks,
and we present their main properties. At the end of the chapter, we focus on the notion of quasi-
coherent sheaf on a stack. We are in particular interested in the line bundles. At first we give a
definition which involves the lisse-étale site of an algebraic stack. While this concept is elegant, it
is difficult to work with in practice, so we provide an equivalent definition for the case of a quotient
stacks. This relates the notion of line bundle on a stack with that of G-equivariant sheaf over a scheme,
with G a smooth group scheme. This is very useful for our purposes sinceM1,1,S is a quotient stack.
The theme of chapter 2 is that of elliptic curves. We start recalling some basic concepts of the
classical theory of elliptic curves over a field k, and after we treat more in general the problem of
families of curves parameterized by a generic scheme T . We describe in detail M1,1. It is a fibered
category over (Sch) and we prove that it is a separated Deligne-Mumford stack, with respect to the
fpqc topology. Moreover, we prove that it is a quotient stack and we describe the morphism into its
coarse moduli space A1. We also describe M1,1,S := M1,1 ×Spec(Z) S for a general scheme S and
some of its properties. After these preliminaries, we are ready to explain the content of the article of
Fulton and Olsson. We do it in chapter 3. The proof is divided into many steps, in each of which
the problem is analyzed by restricting oneself to a specific type of base scheme S for M1,1,S , and we



study them in detail. First of all, we give a proof of the main Theorem in the case of a Z[1/6]-scheme
S. This particular situation is very enlightening because it emphasizes the close relation between the
Hodge bundle λ and the Picard group of the coarse moduli space of M1,1,S . Afterwards, we prove
the Theorem in the case of S normal. Here the point of view is different from the previous case: it
involves the specific nature of the Weil divisors of the scheme A1

S and the structure of the line bundles
over a classifying stack BG. From this situation it is possible to go back to prove the thesis when S
is a reduced scheme. Afterwards, modifying this with arguments coming from deformation theory, we
prove the Theorem for a Z[1/2]-scheme S. Finally, we exhibit an example of a non reduced k-scheme
S, with characteristic of k equal to 2, in which case the thesis of the Theorem fails.

IV



CHAPTER 1
Preliminary Notions

Moduli problems are of crucial interest in Algebraic Geometry. Approximately, the study of moduli is
the study of families of some geometric objects with some specific additional conditions. For example,
one would like to study the family M1,1 of all elliptic curves with suitable morphisms between them
(this is what Chapter 2 is devoted to). What we want to try to do is look for a scheme M , which
is the total space of the parameters, and a universal family E on M such that every other family is
obtained through a pull back of this one. By Yoneda, this is the same of saying that the functor

(Sch)op → (Set)

X 7→ { Family of elliptic curves over X}/ ∼=

is representable, i.e. it is isomorphic to Hom(Sch)(•, X). Unfortunately, this often does not happen for
a number of reasons, which in a certain sense can usually be traced back to the presence of non-trivial
automorphisms of the objects of the family. The problem of classification can be solved by introducing
a new geometric concept: stacks, and more specifically, algebraic stacks.

The objective of this first chapter is to recall the basic theoretical notions necessary to define and
develop the theory on stacks.

First of all we define some kind of morphisms which are fundamental since allow to extend globally
some local properties. Locally doesn’t mean Zariski locally, but (often) locally in the fpqc topology.
It is not a topology in the common sense, but it is a Grothendieck topology, and it is in a certain sense
finer than the Zariski one. In particular, as we will see, Grothendieck topologies allow to generalize
the notion of sheaf.

The phenomenon that consists in constructing global objects by gluing local data that satisfy
suitable cocycle conditions is called descent. Descent theory is fundamental in Algebraic Geometry.
In order to recall it, we will first introduce the formalism of fibered categories.

Afterwards, we define stacks, which are roughly speaking those fibered categories in which descent
theory works. Of greater interest are algebraic stacks. Briefly, are those stacksM which own a smooth
atlas U →M, where U is a scheme, such that for each other morphism Y →M with Y scheme, the
pullback U ×M Y is a scheme too. This implies that M inherits the geometric properties from the
schemes.

We will recall in detail the quotient stacks, which are of crucial importance both because the
Deligne-Mumford stacks are locally described as quotients, and because the stack of elliptic curve is
globally a quotient stack.

Finally, since the objective of the thesis is to give a presentation of the computation of the Picard
group of the stack of elliptic curves, we will conclude the chapter recalling how the notion of quasi-
coherent sheaf can be extended to stacks and, above all, to quotient stacks.

This chapter is almost completely taken from the works of A. Vistoli [Vis04] and M. Olsson [Ols16].

1.1. Some properties of morphisms of schemes

In this section we recall some fundamental properties of morphisms of schemes: smooth, unramified
and étale morphisms. They are crucial in Algebraic Geometry for several reasons. One of the main



Some properties of morphisms of schemes 1. Preliminary Notions

reasons is that, as Proposition 1.1.5 suggests, they allow to global extend some local properties of
morphisms of schemes. They form the basis of the study of the arguments of descent we will see in
the next sections.

Definition 1.1.1. A morphism of schemes f : X → Y is locally of finite presentation if for any x ∈ X
there are affine neighbourhoods U of x in X and V of f(x) in Y such that f(U) ⊂ V and O(U) is
finitely presented (as an algebra) over O(V ).

This property of morphisms of schemes is a kind of generalization of being locally of finite type.
Actually, when Y is locally noetherian, then f is locally of finite presentation if and only if it is locally
of finite type.

Definition 1.1.2. Let f : X → Y be a morphism of schemes. We say that f is formally smooth
(respectively formally unramified, formally étale) if for every affine Y -scheme Y ′ → Y and every
closed embedding Y ′

0 → Y ′ defined by a nilpotent ideal, the map

HomY (Y
′, X)→ HomY (Y0, X)

is surjective (respectively injective, bijective).

Observation 1.1.3. To visualize better the definition, observe the diagram

Y ′
0 X

Y ′ Y.

g

f
h

The definition states that f is formally smooth (respectively formally unramified, formally étale) if
for every g making the diagram above commute, there exists at least (respectively at most, exactly)
a function h such that the diagram commutes.

Definition 1.1.4. If f is locally of finite presentation and formally smooth (respectively formally
unramified, formally étale), then f is called smooth (respectively unramified, étale).

Although the three types of morphisms (unramified, smooth, and étale) can be defined directly
through properties which could suggest better the geometric intuition behind these, in practice the
lifting properties are very useful, above all each time we need a functorial point of view.

Let f : X → Y be a morphism of schemes. The majority of reasonable properties of morphisms of
schemes which f could satisfy, is stable under base change, but the "opposite" is not true in general,
i. e. these properties are not stable for descent. But if we add some further powerful finiteness
conditions to the morphism Y ′ → Y for which we want to pull back, this becomes true.

Proposition 1.1.5. Let
X ′ X

Y ′ Y

be a cartesian diagram of schemes in which Y ′ → Y is faithfully flat and either quasi-compact or
locally of finite presentation. Consider one of the following properties:

▶ is separated,

▶ is quasi-compact,

▶ is locally of finite-presentation,

▶ is proper,

▶ is affine,

▶ is finite,

▶ is flat,

▶ is smooth,

2



1. Preliminary Notions Sheaves in Grothendieck topologies

▶ is unramified,

▶ is étale,

▶ is an embedding,

▶ is a closed embedding.

Then X → Y has of these properties if and only if X ′ → Y ′ has.

Proof. See [Vis04], Proposition 1.15.

In the thesis we will not use the descent for all these properties, but they have been mentioned
anyway to emphasize the importance in the development of the theory of faithfully flat and either
quasi-compact or locally of finite presentation morphisms.

1.2. Sheaves in Grothendieck topologies

Let X be a topological space, and let OpX denote the category in which the objects are the open
subsets of X and the morphisms are the inclusions. Then a presheaf of sets on X is a functor
(OpX )op → (Set). We know that this functor is a sheaf when it satisfies the gluing conditions.

Grothendieck noticed that the definition of sheaf works in practice because there are the inter-
sections (that is the fiber product) in the category OpX and therefore could be adapted to a generic
category. Before generalizing the notion of sheaf, he provided to integrate the notion of topology. The
elegant aspect of its method derives from the fact that he did not redefine the notion of opens subset,
but the notion of covering.

Definition 1.2.1. Let C be a category. A Grothendieck topology on C is the following data: given an
object U of C, we assign to U collections of arrows {Ui → U}. They are called coverings of U . The
following axioms must be satisfied.

▶ If V → U is an isomorphism, then the set {V → U} is a covering.

▶ If {Ui → U} is a covering and V → U is a morphism in C, then the fibered products {Ui ×U V }
exist, and the family of projections {Ui ×U V → V } is a covering.

▶ If {Ui → U} is a covering, and for each index i we have a covering {Vij → Ui} , the collection of
composites {Vij → Ui → U} is a covering of U .

A category with a Grothendieck topology is called site.

Example 1.2.2. Let X be a topological space; let OpX be the category defined above. Then we get
a Grothendieck topology on OpX by associating with each open subset U the set of open coverings of
U .

We see now some examples of topologies that one can put on the category (Sch(S )) of schemes
over S.

Example 1.2.3 (The global Zariski topology). Given a scheme U , a covering {Ui → U} for U is a
family of open embeddings that covers U. Here we must interpret as meaning that a morphism Ui → U
gives an isomorphism of Ui with an open subscheme Vi of U , and the Vi’s cover U in the usually sense.

Example 1.2.4 (The global étale topology). A covering {Ui → U} is a jointly surjective collection
of étale maps.

Example 1.2.5 (The fppf topology). A covering {Ui → U} is a jointly surjective collection of flat maps
locally of finite presentation. The abbreviation fppf stands for "fidèlement plat et de présentatione
finie".

Sometimes one may be interested in considering coverings that are not locally finitely presented. At
the same time, we would like that the coverings behave well, hence we need some finiteness conditions.
Proposition 1.1.5 seems to suggest it might be fine assume the maps being faithfully flat and quasi-
compact. But then, Zariski covers would not be included, and the resulting topology would not be

3



Sheaves in Grothendieck topologies 1. Preliminary Notions

comparable with the Zariski topology. Hence, the definition which follows gives the correct sheaf
theory.

Proposition 1.2.6. Let f : X → Y be a surjective morphism of schemes. Then the following prop-
erties are equivalent:

▶ Every quasi-compact open subset of Y is the image of a quasi-compact open subset of X.

▶ There exists a covering {Vi} of Y by open affine subschemes, such that each Vi is the image of a
quasi-compact open subset of X.

▶ Given a point x ∈ X, there exists an open neighbourhood U of x in X, such that the image f(U)
is open in Y , and the restriction U → f(U) of f is quasi-compact.

▶ Given a point x ∈ X, there exists a quasi-compact open neighbourhood U of x in X, such that
the image f(U) is open and affine in Y .

Proof. See [Vis04], Proposition 2.33.

Definition 1.2.7. An fpqc morphism of schemes is a faithfully flat morphism that satisfies the
equivalent conditions of Proposition 1.2.6

The abbreviation fpqc stands for "fidèlement plat et quasi-compact".
We list here some basic properties of fpqc morphisms.

Proposition 1.2.8. ▶ The composition of two fpqc morphisms is fpqc.

▶ If f : X → Y is a morphism of schemes, and there is an open covering Vi of Y , such that the
restriction f−1(Vi)→ Vi is fpqc, then f is fpqc.

▶ An open faithfully flat morphism is fpqc.

▶ A fppf morphism is fpqc.

▶ Being fpqc is a property stable under base change.

▶ If f : X → Y is an fpqc morphism, a subset of Y is open if and only if f−1(U) is open in X.

Proof. See [Vis04], Proposition 2.35.

Example 1.2.9 (The fpqc topology). Let U be a S-scheme. Then a covering of U is a family of
morphisms {Ui → U} such that the induced morphism

⊔
Ui → U is fpqc.

Remark 1.2.10. The fpqc topology is finer than the fppf topology, which is finer than the étale
topology, which is finer than the Zariski topology.

Fortunately for fpqc morphisms, we do not lose the appreciable properties of Proposition 1.1.5, i.e.
many properties are local on the codomain in the fpqc topology.

Proposition 1.2.11. Let X → Y be a morphism of schemes, {Yi → Y } be an fpqc covering. Consider
the following properties of morphisms of scheme:

▶ is separated,

▶ is quasi-compact,

▶ is locally of finite-presentation,

▶ is proper,

▶ is affine,

▶ is finite,

▶ is flat,

▶ is smooth,

4



1. Preliminary Notions Fibered categories

▶ is unramified,

▶ is étale,

▶ is an embedding,

▶ is a closed embedding.

Then X → Y has one of these properties if and only if for all i ∈ I, Yi ×Y X → Yi has it too.

Proof. See [Vis04], Proposition 2.36.

We present now the Grothendieck generalization of the concept of sheaf.

Definition 1.2.12. Let C be a site, F : Cop → (Set) a presheaf.

▶ F is said to be separated if, given a covering {Ui → U}i∈I , the map F (U) →
∏

i∈I F (Ui) is
injective.

▶ F is a sheaf if for every object U ∈ C and covering {Ui → U}i∈I the sequence

F (U)
∏

i∈I F (Ui)
∏

i,j∈I F (Ui ×U Uj)
f pr1

pr2

is exact, i. e. the map f identifies F (U) with the equalizer of the two projections.

Remark 1.2.13. As in the classical case of topological spaces we can talk about sheaves of groups,
rings, modules over a ring, etc. on a site.

Remark 1.2.14. The usual construction of sheafification of a presheaf of sets on a topological spaces
carries over to this more general context. For the details, see Paragraph 2.3.7 of [Vis04].

In the end, we want to emphasize that sometimes two different topologies on the same category
define the same sheaves.

Definition 1.2.15. Let C be a category, {Ui → U}i a set of arrows. A refinement {Vα → U}α is a
set of arrows such that for each index α there is some i such that Vα → U factors through Ui → U .

Definition 1.2.16. Let C be a category, T and T ′ two topologies on C. We say that T is subordinate
to T ′ if every covering in T has a refinement that is a covering in T ′. In the case in which every
covering of in T ′ has a refinement in T too, we say that T and T ′ are equivalent.

Proposition 1.2.17. Two topologies T and T ′ on a category C are equivalent if and only if they
have the same sheaves.

Proof. See [Vis04], Proposition 2.49.

Example 1.2.18. The last proposition is the reason for which we have not defined the smooth topology
over (Sch/S ), in which coverings {Ui → U} are jointly surjective set of smooth morphisms.

In fact, by Corollary 17.16.3 in [Gro67], given a smooth covering {Ui → U} we can find an
étale surjective morphism f : V → U that factors through the disjoint union

⊔
Ui → U . Then,

{f−1(Ui)→ U} is an étale covering that is a refinement of the previous one.
Since obviously every étale covering is a smooth cover, the two topologies are equivalent.

1.3. Fibered categories

Fix a category C. In this section we study a phenomenon that concerns categories over C, that is, the
data of a category F and of a functor ρF : F → C.

5



Fibered categories 1. Preliminary Notions

Definition 1.3.1. Let F be a category over C. An arrow Φ: ξ → ν of F is cartesian if for any arrow
Ψ: χ→ ν in F and any arrow h : ρFχ→ ρFξ in C with ρFΦ ◦ h = ρFΨ, there exists a unique arrow
ϑ : χ→ ξ with ρFϑ = h and Φ ◦ ϑ = Ψ, as in the commutative diagram

χ

ξ ν

ρFχ

ρFξ ρFν.

ϑ

Ψ

Φ

h

If ξ → ν is a cartesian arrow of F mapping to an arrow U → V of C, we also say that ξ is a pullback
of ν to U .

Remark 1.3.2. Given two pullback Φ: ξ → ν and Φ̃ : ξ̃ → ν of ν to U , the unique arrow ϑ : ξ̃ → ξ
that fits into the diagram

ξ̃

ξ ν

U

U V.

ϑ

Φ̃

Φ

is an isomorphism.
In other words, a pullback is unique, up to a unique isomorphism.

Definition 1.3.3. A fibered category over C is a category F over C, such that for every arrow f : U → V
in C and an object ν of F mapping to V , there is a cartesian arrow Φ: ξ → ν with ρFΦ = f .

Definition 1.3.4. If F and G are fibered categories over C, then a morphism of fibered categories
F : F → G is a functor such that:

▶ F is base-preserving, that is ρG ◦ F = ρF .

▶ F sends cartesian arrows to cartesian arrows.

We use the following notation: given a fibered category F over C and given an object U ∈ C we
denote with F(U) the subcategory of F whose objects are the objects ξ of F such that ρFξ = U , and
whose morphisms are morphisms Φ in F with ρFΦ = idU .

In this thesis we are fundamentally interested in categories fibered in groupoids.

Definition 1.3.5. A category fibered in groupoids over C is a category F fibered over C, such that the
category F (U) is a groupoid for any object U of C. A groupoid is a category in which every morphism
is invertible.

Proposition 1.3.6. Let F be a category over C. Then F is fibered in groupoids if and only if the
following two conditions hold.

▶ Every morphism in F is cartesian.

▶ For each object ν of F and morphism f : U → ρFν of C, there exists a morphism Φ: ξ → ν of F
with ρFΦ = f .

Proof. See [Vis04], Proposition 3.22.

Corollary 1.3.7. Any base-preserving functor from a fibered category to a category fibered in
groupoids is a morphism.

6



1. Preliminary Notions Fibered categories

Proof. This is trivial, by the previous characterization.

We are interested in defining the fiber product of categories fibered in groupoids.
First of all, we must consider fiber products of groupoids. Let

G1

G2 G

f

g

be a diagram of groupoids. The groupoid

G1 ×G G2 (1.1)

is defined as follows. The objects of G1×G G2 are triples (x, y, σ) where x ∈ G1 and y ∈ G2 are objects
and

σ : f(x)→ g(y)

is an isomorphism in G. A morphism

(x′, y′, σ′)→ (x, y, σ)

is a pair of isomorphisms a : x→ x′ and b : y → y′ such that the diagram

f(x′) g(y′)

f(x) g(y)

σ′

f(a) g(b)

σ

commutes.
There is a natural isomorphism of functors

Σ: f ◦ pr1 → g ◦ pr2,

where pri denote the projections. The category G1 ×G G2 together with the functors pr1 and pr2, and
the isomorphism Σ have the following universal property. Suppose H is another groupoid and that

α : H → G1, β : H → G2 γ : f ◦ α→ g ◦ β

are two functors and γ is an isomorphism of functors. Then there exists a collection of data

(h : H → G1 ×G G2, λ1, λ2)

where h is a functor,
λ1 : α→ pr1 ◦ h, λ2 ◦ β → pr2 ◦ h

are isomorphisms of functors, and the diagram

f ◦ α f ◦ pr1 ◦ h

g ◦ β g ◦ pr2 ◦ h

f(λ1)

γ Σ◦h
g(λ2)

commutes. The data
(h, λ1, λ2)

is unique up to unique isomorphism.

We consider now the fiber product of categories fibered in groupoids. Let C be a category and let

F1

F2 F3

c

d

7



Descent of objects of fibered category and stacks 1. Preliminary Notions

be a diagram of categories fibered in groupoids over C.
Consider a category G fibered in groupoids over C, morphism of fibered categories

α : G → F1, β : G → F2

and an isomorphism γ : c◦α→ d◦β of morphisms of fibered categories G → F3. We must clarify what
we mean here for transformation of morphism of fibered categories. It is a natural transformation of
functors such that for every x ∈ G, the morphism γx : c◦α(x)→ d◦β(x) in F3 projects to the identity
morphism in C. In other words, γx is a morphism in F3(ρG(x)). Giving the data (α, β, γ) is equivalent
to giving an object of

HomC(G,F1)×HomC(G,F3) HomC(G,F2).

Such data defines for any other category fibered in groupoids H a morphism of groupoids

HomC(H,G)→ HomC(G,F1)×HomC(G,F3) HomC(G,F2)

(h : H → G) 7→ (α ◦ h, β ◦ h, γ ◦ h).
(1.2)

Proposition 1.3.8. ▶ There exists a collection of data (G, α, β, γ) as above, such that for every
category fibered in groupoids H over C the map 1.2 is an isomorphism.

▶ If (G′, α′, β′, γ′) is another collection of data as in the previous point, then there exists a triple
(F, u, v) where F : G → G′ is an equivalence of fibered categories, u : α→ α′ ◦F and v◦β → β′ ◦F
are isomorphisms of morphisms of fibered categories, and the following diagram commutes:

c ◦ α c ◦ α′ ◦ F

d ◦ β d ◦ β′ ◦ F.

c◦u

γ γ′

d◦v

Moreover, if (F ′, u′, v′) is a second such triple, then there exists a unique isomorphism σ : F ′ → F
such that the diagrams

α α′ ◦ F ′

α′ ◦ F

u′

u
σ

and
β β′ ◦ F ′

β′ ◦ F

v′

v
σ

commute.

Proof. See [Ols16], Proposition 3.4.13

Definition 1.3.9. We write F1 ×F3 F2 for the fibered category in the first point of the Proposition
1.3.8. The quadruple (F1 ×F3

F2, α, β, γ) is said the fiber product of F1 and F2 over F3 . We always
suppress the data of the morphisms from the notation, since it is implicit.

Observation 1.3.10. In the case when C is the punctual category, the fiber product construction
coincides with that of 1.1.

1.4. Descent of objects of fibered category and stacks

Descent theory is the natural generalization to sites of the more familiar gluing properties that one
encounters in the study of schemes.

Let C be a site. Let F be a category fibered over C. Given a covering {Ui → U}, set Uij := Ui×Uj

and Uijk := Ui ×U Uj ×U Uk for each triple of indices i, j and k.

8



1. Preliminary Notions Descent of objects of fibered category and stacks

Definition 1.4.1. Let U = {σi : Ui → U} be a covering in C. We define the category of descent
data associated to the cover U , denoted by F(U) = F({Ui → U}), in the following way. The objects
are ({ξi}, {Φij}), where (as the indices vary) ξi is an object in F (Ui), and Φij is an isomorphism
Φij : pr

∗
2ξj
∼= pr∗1ξi in F (Uij). These morphisms must satisfy the following cocycle condition.

For any triple of index i, j and k, we have the equality

pr∗13Φik = pr∗12Φij ◦ pr∗23Φjk : pr
∗
3ξk → pr∗1ξi,

where the pr represent the corresponding projections. The isomorphisms Φij are called transition
isomorphisms of the object with descent data.

Given two objects ({ξi}, {Φij}) and ({νi}, {Ψij}) in F(U), an arrow

{αi} : ({ξi}, {Φij})→ ({νi}, {Ψij})

is a collection of morphisms αi : ξi → νi in F (Ui), with the property that for each pair of indices i, j,
the diagram

pr∗2ξj pr∗2νj

pr∗1ξi pr∗1νi

pr∗2αj

Φij Ψij

pr∗1αi

commutes.
The composition of morphisms is made in the obvious way.

There is a functor F(U)→ F({σi : Ui → U}i). Namely, for each object ξ ∈ F(U) we can construct
the object with descent data ({σ∗

i ξ}, {Φij}), where the isomorphisms Φij : pr
∗
2σ

∗
j ξ
∼= pr∗1σ

∗
i ξ are those

which come from the fact that both pr∗2σ
∗
j ξ and pr∗1σ

∗
i ξ are pullback of ξ to Uij . Given an arrow

α : ξ → ν in F(U), we get the natural arrows σ∗
i α.

Remark 1.4.2. The category of descent data does not depend on the choice of fibered products Uij

and Uijk, in the sense that with different choices we get isomorphic categories.
By the axiom of choice, every fibered category F → C has a cleavage, that is a class K of cartesian

arrows in F such that for each arrow f : U → V in C and each object ν in F(V ) there exists a unique
arrow in K with target ν mapping to f in C.

It is important to notice that the morphism F(U)→ F({Ui → U}) does not depend on the choice
of a cleavage.

In this thesis we will often say "the pullback" instead of "a pullback", omitting the choice behind
this. This is not very formal, it is possible to make the arguments more rigorous, as it is done for
example in [Vis04], Paragraph 4.1.2.

We are finally ready to define the stacks.

Definition 1.4.3. Let C be a site. A category fibered in groupoids ρ : F → C is a stack if for every
object U ∈ C and covering {Ui → U}, the functor

F(U)→ F({Ui → U}) (1.3)

is an equivalence of categories.
If the functor is fully faithful, the category is said to be a prestack.

We give now some definitions to give an alternative formulation of the previous concept.

Definition 1.4.4. An object with descent data ({ξi}, {Φij}) in F({Ui → U}) is effective if it is
isomorphic to the image of an object of F(U).

Hence a prestack is a stack if and only if every object with descent data is effective.
Let U ∈ C be an object and let (C/U) the comma category, i. e. the objects are the morphism

V → U and the arrows are the commutative diagram as the following:

V1 V2

U.

9



Descent of objects of fibered category and stacks 1. Preliminary Notions

Consider the comma topology, in which the covers of V → U are of the type {Vi → U}i, with
{Vi → V }i a cover of C and making the diagram

Vi V

U

commute for all i.
Let ξ, ν ∈ F(U) be two objects in the fiber over U . We can define a presheaf

Isom(ξ, ν) : (C/U)op → (Set)

as follows.
For any morphism f : V → U , choose pullbacks f∗ξ and f∗ν, and set

Isom(ξ, ν)(f : V → U) := IsomF(V )(f
∗ξ, f∗ν).

For a composition

Z V U,
g f

the pullback (fg)∗ξ (respectively (fg)∗ν), is a pullback along g of f∗ξ (respectively f∗ν), and therefore
there is a canonical map

g∗ : Isom(ξ, ν)(f : V → U)→ Isom(ξ, ν)(fg : Z → U)

compatible with composition.

Proposition 1.4.5. Let F be a category fibered in groupoid over a site C. Then F is a prestack if and
only if for any object U of C and any two object ξ and ν in F(U), the functor Isom(ξ, ν) : (C/U)op →
(Set) is a sheaf in the comma topology.

Proof. See [Vis04], Proposition 4.7.

Remark 1.4.6. Recall that the fibered product of stacks is simply the fibered product as categories
fibered in groupoids. Actually, let

F1

F2 F3

be a diagram of stacks fibered in groupoids over C. Then the fiber product F1 ×F3 F2 is a stack too.
This follows from noting that for any covering {Ui → U} in C the maps

(F1 ×F3 F2)(U)→ F1(U)×F3(U) F2(U)

and
(F1 ×F3

F2)({Ui → U})→ F1({Ui → U})×F3({Ui→U}) F2({Ui → U})
are equivalences of groupoids.

At this point, we give an example of important result of descent theory, in particular for what
concerns quasi-coherent sheaves.

Theorem 1.4.7. Let S be a scheme. The fibered category (QCoh/S ) over(Sch/S ), whose fiber of a
scheme U over S is the category QCoh(U) of quasi-coherent sheaves on U , is a stack with respect to
the fpqc topology.

Proof. For a proof, see [Vis04] Theorem 4.23.

This is quite considerable. Actually, it is a standard fact of the classic Algebraic Geometry that
quasi-coherent sheaves are sheaves in the Zariski topology. But Zariski topology is much coarser then
fpqc, so a priori one would not expect this to happen. This result is very powerful and it carries to
many generalizations, such as Theorem 2.2.10 in Chapter 2, which for us is essential to prove our
results on the stack of elliptic curves.
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1. Preliminary Notions Torsors

1.5. Torsors

Definition 1.5.1. Let C be a site and let µ be a sheaf of groups on C. We say that a sheaf P on C
is a µ-torsor if there is a left action ρ of µ on P, such that the following conditions hold:

▶ For every U ∈ C there exists a covering {Ui → U} such that P(Ui) ̸= ∅ for all i.

▶ The map

µ× P → P × P,
(g, p) 7→ (p, gp)

(1.4)

is an isomorphism.

Observe that in light of the second condition, when P(U) is nonempty the action of µ(U) on P(U)
is simply transitive. We say that a torsor (P, ρ) is a trivial torsor if P has a global section p, which
implies in particular that we have an isomorphism

µ→ P
g 7→ gp.

A morphism of µ-torsors (P, ρ)→ (P ′, ρ′) is simply a µ-equivariant morphism of sheaves f : P → P ′.
The notion of torsor is closely related to the more classical notion of principal bundle. To explain

this, fix a scheme X and consider the site (Sch/X ) of schemes over X with the fppf topology. This
is the common choice of topology, since in the Zariski topology there are few open sets. Assume µ is
representable by a flat locally finitely presented affine X-group scheme G.

Definition 1.5.2. A principal G-bundle over X is a pair (π : P → X, ρ), where π is flat, locally
finitely presented, surjective morphism of schemes, and ρ : G×X P → P is a morphism such that the
following axioms hold:

▶ The diagram

G×X G×X P G×X P

G×X P P

idG×ρ

m×idP ρ

ρ

(1.5)

commutes, where m is the map defining the group law of G.

▶ If e : X → G is the identity section, then the diagram

P G×X P P
(e◦π,idP )

idP

ρ

commutes.

▶ The map
(ρ, pr2) : G×X P → P ×X P (1.6)

is an isomorphism.

A morphism of principal G-bundles (P, ρ)→ (P ′, ρ′) is a morphism of X-schemes f : P → P ′ such
that the diagram

G×X P G×X P ′

P P ′

ρ

idG×f

ρ′

f

commutes.

11
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Observation 1.5.3. Let (P, ρ) be a principal G-bundle. We obtain a µ-torsor (P, ρ), by letting P be
the sheaf represented by P . The action is that induced by ρ. Observe that in this way by the first two
conditions in the Definition 1.5.2, follows that ρ : µ × P → P is a left action. The third condition in
1.5.2 implies the second in 1.5.1. Finally the first condition in the definition of Torsors (1.5.1) follows
from the fact that locally in the fppf topology P has sections, i.e. there exists an fppf cover {Xi → X}
with P(Xi) ̸= ∅ for all i. Moreover the morphisms between torsors and between G-bundles are both
equivariant by definition. Hence this defines a fully faithful functor

(principal G − bundles)→ (µ− torsors on X ). (1.7)

. Under certain hypothesis this is an equivalence, as we can see in the following proposition.

Proposition 1.5.4. If the structure morphism G → X is affine, then 1.7 is an equivalence of cate-
gories.

Proof. See [Ols16], Proposition 4.5.6.

1.6. Algebraic Stacks

In this section we want to define algebraic stacks.
In order to define algebraic stacks, we need to present another fundamental preliminary notion,

that is the notion of algebraic space. By definition, an algebraic space over a scheme S is a sheaf
on the global étale site of the category of S-schemes, which satisfies certain properties similar to
the properties needed to define the notion of scheme from the notion of affine scheme. One way to
think about algebraic spaces is using étale equivalence relations. If X is a scheme over a base S, an
equivalence relation on X is a monomorphism R ↪→ X ×S X such that for every S-scheme T the
T -valued points R(T ) ⊂ X(T ) × X(T ) is an equivalence relation. We want to consider just étale
equivalence relations, that are those equivalence relations R for which the two projections R→ X are
étale. For such an equivalence relation, one can form the sheaf X/R on the big étale site by sheafifying
the presheaf sending T to the quotient of X(T ) by the equivalence relation R(T ). The sheaf X/R is
an algebraic space, and every algebraic space can be described in this way. Exploiting this definition
is easy to produces a lot of examples of algebraic spaces. By the way, this definition is often difficult
to work with in practice. Fortunately, there is the possibility to give (as we do below) a more global
definition of algebraic space, which is equivalent to the previous one.

Definition 1.6.1. Let S be a scheme and let f : F → G be a morphism of sheaves on (Sch/S ) with
the étale topology.

▶ f is representable by schemes if for every S-scheme T and morphism T → G the fiber product
F ×G T is a scheme.

▶ A property P of morphism of schemes is said to be stable if for all f : X → Y in the site C and
covering {Yi → Y }, the morphism f satisfies P if and only if all the maps X ×Y Yi → Yi satisfy
P .

▶ Let P be a stable property of morphisms of schemes. If f is representable by schemes, we say
that f has property P if for every S-scheme T the morphism of schemes pr2 : F ×G T → T has
property P .

Remark 1.6.2. In the above definition, and we will do it for the entire thesis, we will abusively write
T both for the scheme and the corresponding sheaf Hom(Sch/S)(•, T ).

Lemma 1.6.3. Let S be a scheme and let F be a sheaf on (Sch/S ) with the étale topology. Suppose
that the diagonal morphism ∆: F → F ×F is representable by schemes. Then if T is a scheme, any
morphism f : T → F is representable by schemes.

12



1. Preliminary Notions Algebraic Stacks

Proof. Indeed, if T and T ′ are schemes, the fiber product of the diagram

T

T ′ F

f

g

is isomorphic to the fiber product of the diagram

T ×S T ′

F F × F ,

f×g

∆

and since ∆ is representable by schemes the fiber product is a scheme.

Definition 1.6.4. Let S be a scheme. We say that a functor X : (Sch/S )op → (Set) is an algebraic
space over S, if the following hold:

▶ X is a sheaf in the big étale topology.

▶ The diagonal morphism ∆: X → X ×S X is representable by schemes.

▶ There exists an S-scheme U → S and a surjective étale morphism U → X.

Notice that the third condition makes sense in light of the second one and of Lemma 1.6.3.

Example 1.6.5. Schemes over S are algebraic spaces over S.

In order to see some non trivial examples of algebraic spaces, the proof of the equivalence between
this global definition and the definition provided giving an étale equivalence relation as mentioned
above, and the description of the main properties of these spaces, we suggest the reader to read
Chapter 5 in [Ols16]. The reason for which we do not develop the exposition about the algebraic
spaces is that in this thesis we only need them to define in a way as complete and general as possible
the algebraic stacks. However, even if several algebraic spaces appear in the definition of algebraic
stack, the ones we will encounter in the thesis will all be defined through schemes (this is fortunate
because they will be easier to study).

In this section, by stack we mean a stack in the sense of Definition 1.4.3 over the category of
S-schemes with the fpqc topology.

Definition 1.6.6. A morphism of stacks f : X → Y is representable if for every scheme U and
morphism y : U → Y the fiber product X ×Y,y U is an algebraic space.

Definition 1.6.7. A stack X/S is an algebraic stack if the following hold:

▶ The diagonal
∆: X → X ×S X

is representable.

▶ There exists a smooth morphism π : X → X with X a scheme.

A morphism of algebraic stacks f : X → Y is a morphism of stacks.

Note that the diagonal being representable implies that every morphism t : T → X , with T a
scheme, is representable, basically for the same argumentation made to prove Lemma 1.6.3. It therefore
makes sense to talk about a smooth surjective morphism X → X .

Lemma 1.6.8. Let X/S be a stack over S. The diagonal ∆: X → X ×S X is representable if and
only if for every S-scheme U and two object u1, u2 ∈ X (U) the sheaf Isom(u1, u2) on (Sch/S )) is an
algebraic space.
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Proof. This is immediate from the definition and noting that we have a cartesian square

Isom(u1, u2) U

X X ×S X .

u1×u2

∆

(1.8)

Proposition 1.6.9. Let X/S be an algebraic stack. Then for any diagram

X

Y X ,

x

y

with X and Y algebraic spaces, the fiber product X ×X Y is an algebraic space. In particular, any
morphism x : X → X from an algebraic space X to X is representable.

Proof. See [Ols16], Proposition 8.1.10.

We resume now some basics facts about properties of algebraic stacks and morphisms between
them.

Definition 1.6.10. Let P be a property of S-schemes, which is stable in the smooth topology. We say
that an algebraic stack X/S has property P if there exists a smooth surjective morphism π : X → X
with X a scheme having property P .

For example, being locally noetherian, regular, locally of finite type over S, locally of finite pre-
sentation over S, are such P . Since we would like this to be an intrinsic property of the stack, it is
natural to hope that it does not depend on the choice of the scheme. The following lemma assures us
of this.

Lemma 1.6.11. Let P be a property of schemes which is stable with respect to the smooth topology,
and let X/S be an algebraic stack having property P . Then for any smooth morphism y : Y → X
from an algebraic space Y , the space Y has property P .

Proof. See [Ols16], Lemma 8.2.4.

We want to follow similar principal to define properties of morphisms of algebraic stacks. To do
this, we introduce the following terminology. Let f : X → Y be a morphism of algebraic stacks over
S. A chart for f is a commutative diagram

X X ′ Y

X Y,

g

h

q

f ′

p′ p

f

(1.9)

where X and Y are algebraic spaces, the square is cartesian, and g and p are smooth and surjective.
In the case X and Y are schemes, then we call this a chart for f by schemes.

Definition 1.6.12. Let P be a property of morphisms of schemes which is stable and local on domain
with respect to the smooth topology. We say that a morphism f : X → Y has property P if there
exists a chart f by schemes such that the morphism h (1.9) has property P .

For example, P could be the property of being smooth, locally of finite presentation, surjective. It
is natural to hope that this not depends on the choice of the chart. This is indeed true, as we can see
in the following proposition.

Proposition 1.6.13. Let P be a property of morphisms of schemes which is stable and local on
domain with respect to the smooth topology. Then a morphism of algebraic stacks f : X → Y has
property P if and only if for every chart for f (1.9), the morphism h has property P .
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Proof. See [Ols16], Proposition 8.2.8.

Definition 1.6.14. Let P be a property of morphisms of algebraic spaces which is stable with respect
to the smooth topology on the category of algebraic spaces over S. We say that a representable
morphism of algebraic stacks f : X → Y has property P if for every morphism Y → Y with Y an
algebraic space, the morphism of algebraic spaces (since f is representable)

X ×Y Y → Y

has property P .

Observe that this definition is a particular case of definition 1.9, in which simply X ×Y Y is already
an algebraic space.

For example, we can talk about a representable morphism of algebraic stacks being étale, smooth
of relative dimension d, separated, proper, affine, finite, unramified, a closed/open embedding.

In particular if f : X → Y is a morphism of algebraic stacks over S, then the diagonal morphism

∆X/Y : X → X ×Y X (1.10)

is representable, and we can make the following definition.

Definition 1.6.15. Let f : X → Y be a morphism of algebraic stacks over S, and let ∆X/Y be the
diagonal morphism. We say that:

▶ f is quasi-separated if the diagonal ∆X/Y is quasi-compact and quasi-separated.

▶ f is separated if the diagonal ∆X/Y is proper.

If Y = S and f is the structure morphism, then we simply say that X is quasi-separated (resp.
separated).

We know present a fundamental type of stack.

Definition 1.6.16 (Deligne-Mumford stack). An algebraic stack X/S is called Deligne-Mumford if
there exists an étale surjection X → X with X a scheme.

These stacks are the most studied and a lot of natural stacks are of this type. For example we will
see in Chapter 2 that the stack of elliptic curvesM1,1 is Deligne-Mumford.

The property of being formally unramified is stable and local on a domain with respect to the étale
topology on the category of schemes, and stable with respect to the smooth topology. It therefore
makes sens to talk about representable morphism of stacks being formally unramified.

Theorem 1.6.17. Let X/S be an algebraic stack. Then X is Deligne-Mumford if and only if the
diagonal

∆: X → X ×S X

is formally unramified.

Proof. For a proof see [Ols16], Theorem 8.3.3, or the book of Laumon and Moret-Bailly [LMB18],
proof of 8.1.

We are not interested in going further into the topic of the Deligne-Mumford stacks, because this
goes beyond the objectives of the thesis. For a more precise treatment see [Ols16] on Chapter 8.3. We
will just use the fact that the result of the previous theorem can be interpreted as saying that a stack
X is Deligne-Mumford if and only if the objects of X admit no infinitesimal automorphism. Precisely,
let X/S be an algebraic stack and assume that the diagonal ∆: X → X ×S X is of finite presentation.
Then the diagonal is formally unramified if and only if for every algebraically closed field k and object
x ∈ X (k), the automorphism group scheme Autx is a reduced finite k-group scheme (i. e. a finite
group). See [Ols16], Remark 8.3.4 for more details.
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1.7. The algebraic stack [X/G]

We introduce now a fundamental example which, due to its importance, deserves a thorough discussion.

Definition 1.7.1. Let X be a S-scheme and G/S be a smooth group scheme which acts on X. Define
[X/G] to be the stack whose objects are triples (T,P, π) where

1. T is an S-scheme.

2. P is a GT := G×S T -torsor on the big étale site of T .

3. π : P → X ×S T is a GT -equivariant morphism of sheaves on (Sch/S ).

A morphism (T ′,P ′, π′) → (T,P, π) is a pair (f, f b), where f : T ′ → T is an S-morphism of schemes
and f b : P ′ → f∗P is an isomorphism of GT ′ -torsors on (Sch/T ′) such that the induced diagram

P ′ f∗P

X ×S T ′

fb

π′

f∗π

commutes.

We now make a brief digression by presenting a definition and a preliminary lemma. Thanks to
these, at the end of the section we see that [X/G] is an algebraic stack and we prove a powerful
criterion for establishing when a stack is indeed a quotient stack.

Definition 1.7.2. Let X → S be a stack over (Sch/S ) (with the étale topology), and let x : X → X
be a morphism of stacks. Suppose the group G acts on X via χ : G ×S X → X. We say that x is
G-invariant if there exists a natural isomorphism α : x ◦ χ→ x ◦ pr2 in the diagram

G×S X X

X X .

χ

pr2 x

x

Moreover, α must satisfy the condition that the diagram

x(χ(g1g2, z)) x(z)

x(χ(g2, z)) x(z)

α(g1g2,z)

α(g1,χ(g2,z))

α(g2,z)

commutes for all g1, g2 ∈ G and z ∈ X.

Observation 1.7.3. Let (X, pr2 : G×S X → X, (χ, pr2)) be the tautological torsor (χ : G×S X → X
is simply the action).

We can observe that the morphism x : X → [X/G] induced by the tautological torsor is G-invariant
by construction.

Lemma 1.7.4. Let t : T → X be a map where T denotes a scheme and X an algebraic stack. Let X
be a scheme with an action χ of the group scheme G. The fiber product X×X T is an étale sheaf over
T . If x : X → X is G-invariant, then the action of G on X induces one of GT on the sheaf X ×X T .
Moreover:
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▶ In the diagram

X ×X T

X ×S T T

X X

S

pr2

pr1

π

π2

π1 t

x

pr2 is GT -invariant and π is GT -equivariant.

▶ for all v : V → X , given an X -map f : T → V , the induced dashed morphism h

X ×X T

T ×V (X ×X V ) X ×X V

T V

h

f

is GT -equivariant and makes the diagram

X ×X T T ×V (X ×X V )

X ×S T

h

π

f∗πV

2-commutes, where πV is the GV -equivariant map defined in the first item.

Proof. As action on X ×X T , we define

ρT : GT ×T X ×X T → X ×X T

(g, z, y, σ) 7→ (χ(g, z), y, σ ◦ α(g,z)),

where z ∈ X, y ∈ T and σ : x(z)→ t(y) is an isomorphism. Since α is associative, ρT is a GT -action.
For the first point, the properties can be expressed as the commutativity of the squares

(g, z, y, σ) (z, y, σ)

(χ(g, z), y, σ ◦ α(g,z)) y

ρT pr2

pr2

and

(g, z, y, σ) (g, z, y)

(χ(g, z), y, σ ◦ α(g,z)) (χ(g, z), y),

idG×π

ρT χ×id

π

which is actually true.
For the last item, h is the map which associates

(z, y, σ) 7→ (y, (z, f(y), β−1
y ◦ σ)),
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where β is the natural isomorphism of the commutative diagram

T V

X .

f

t v

Since the square

(g, z, y, σ) (g, (y, (z, f(y), β−1
y ◦ σ)))

(χ(g, z), y, σ ◦ α(g,z)) (y, χ(g, z), f(y), β−1
y ◦ σ ◦ α(g,z)))

idG×h

ρT f∗(ρV )

h

commutes, h is GT -invariant. Moreover, by the uniqueness of the map induced in the fiber product,
we have f∗(πV ) ◦ h = πT .

Theorem 1.7.5. [X/G] is an algebraic stack.

Proof. Descent for sheaves implies that [X/G] is a stack, see [Ols16], Proposition 4.2.12.
By [Sta22], Tag [046K], if we find a smooth surjective atlas for [X/G], then the diagonal ∆[X/G]

is representable.
To conclude it suffices to prove the following claim: the morphism x : X → [X/G] induced by

the tautological torsor is a smooth surjective atlas. Let t : T → [X/G] be the morphism induced by
(T,P, πT ). We restrict to an étale cover {fi : Ti → T} and we take ti := f∗

i t, so we can suppose
without loss of generality that P ∼= GT = G×S T . We want to prove that X ×[X/G] T ∼= GT and we
are done. By Lemma 1.7.4, X ×[X/G] T → T is a GT -torsor. Moreover, as it is explained in Lemma
1.7.4, item 1., we have the natural map π : X ×[X/G] T → X ×S T is a morphism of GT -torsors over
the scheme T . However, a morphism of torsor is always an isomorphism, and this concludes the proof.

When we are in the setting of Proposition 1.5.4, i.e. the morphism G→ S is affine, this Corollary
follows.

Corollary 1.7.6. If G/S is an affine smooth group scheme, the algebraic stack [X/G] can be described
as the stack over (Sch/S ) whose objects are triples (T, P, ρ, π) where:

▶ T is an S-scheme and (P → T ) is a principal GT -bundle on T ,

▶ π : P → X ×S T is a GT -equivariant map of T -schemes.

Morphisms are pairs (f, g) : (T, P, ρ, π)→ (T ′, P ′, ρ′, π′) where f : T → T ′ is an S-morphism of schemes
and g : P → P ′ ×T ′ P is a GT -equivariant morphism such that the induced diagram

P P ′ ×T ′ T

X ×S T

g

π

f∗π′

commutes.

Definition 1.7.7 (BG). If G/S is a smooth group scheme, the classifying stack of G is the stack
quotient [S/G] where G acts trivially on S. It is denoted BG.

These stacks are crucial for example in the study of Deligne-Mumford stacks with coarse moduli
spaces, since one can prove that they are locally quotient stacks, see Theorem 1.8.4 in the following
section.

The quotient stacks are easy to study; in particular, it is a pleasant surprise that the stack of
elliptic curves is indeed a quotient stack, see Theorem 2.3.5 in the next chapter.

By the way, not all the algebraic stacks are quotient of schemes by group actions, hence we are
interested in proving a criterion for when an algebraic stack is a global quotient, and the rest of the
section is devoted to this.
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1. Preliminary Notions The algebraic stack [X/G]

We are now ready to state a criterion for an algebraic stack to be equivalent to a quotient stack
[X/G]. As always in this thesis, we suppose that G is affine.

Theorem 1.7.8. Let ρ : X → S be a stack. Let x : X → X be a G-invariant map of stacks. Suppose
that G is affine. If for all t : T → X

(pr2 : X ×X T → T, ρT )

is a principal GT -bundle, then X and [X/G] are equivalent as stacks. In particular, there exists a
2-commutative diagram

X X

[X/G] ,

x

∼=

where X → [X/G] is the covering map defined by the tautological torsor

(X, (G×S X → X), (χ, q2))

as in the proof of Theorem 1.7.5.

Proof. First of all, we want to define the morphism of fibered categories over S with the étale topology

F : X → [X/G].

For what concerns the objects, F associates to an object T → X the triple

(T, (X ×X T → T, ρT ), π).

About the arrows, F associates to a morphism f : T → V over X the pair (f, h) where π and h are
the maps defined in the Lemma 1.7.4. Thanks to the properties of π and h described in Lemma 1.7.4,
F is well-defined.

Claim: F is an equivalence.
To check this, it is enough to prove that for each T/S

FT : X (T )→ [X/G](T )

is fully faithful and essentially surjective.
(Step 1) It is clear that the couple (f, h) determines uniquely f , hence FT is faithful.
(Step 2) In this step we prove that FT is full.
Fix two elements t : T → X and t′ : T → X , and consider a [X/G](T )-morphism (idT , h) : FT (t)→

FT (t
′). We use the notation ’ to denote all the objects related to t′. We have to find a natural

isomorphism β : t→ t′. By the commutativity of

X ×X T T ×T (X ×X T )

X ×S T,

h

π

π′

we get
h(z, y, σ) = (y, (z, y, σ′))

and, in particular, an isomorphism σ′ ◦ σ−1 : t(y) → x(z) → t′(y). Étale locally {Ti → T}i∈I in T ,
the composition eGTi

: Ti → GTi with the isomorphisms given by a fixed section pi : GTi → X ×X Ti

insures a section si : Ti → X ×X Ti of the second projection. For all y ∈ Ti set βy := σ′
i ◦ σ

−1
i , where

the index i represents xi ∈ X, i.e. we have si(y) = (xi, y, σi) and h(xi, y, σi) = (y, (xi, y, σ
′
i)).

On the intersections Tij there exists a unique g ∈ GTij
such that si|Tij

= g · sj |Tij
. If we evaluate

in y ∈ Tij we get
h(xi, y, σi) = h(g · (xj , y, σj))
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The algebraic stack [X/G] 1. Preliminary Notions

from which

h(χ(g, xj), y, σj ◦ α(g,xj)) = h(g · (xj , y, σj)) =

g · h(xj , y, σj) = g · (y, (xj , y, σ
′
j)) =

(y, (χ(g, xj), y, σ
′
j ◦ α(g,xj)).

The second equality is true for the GT -equivariance. Here α is the map that follows from the definition
of invariance as before. Therefore,

σ′
i ◦ σ−1

i = (σ′
j ◦ α(g,xj)) ◦ (σj ◦ α(g,xj))

−1 = σ′
j ◦ σ−1

j .

So we have a global map β : t→ t′, where

βy ◦ σ′ ◦ σ−1 : t(y)→ t′(y)

belongs to IsomX (T )(t(y), t
′(y)). By its construction, β behaves well on the arrows, that is it makes

the top square in the diagram

Y1 Y1

Y2 Y2

T T

βy1

Φ

y1

Φ

y1

y2

βy2

y2

idT

commute, and so it is a natural transformation. This complete the proof that the functor FT is full.
(Step 3) In this step we prove that FT is essentially surjective.
Given an element

(T, (γ : P → T, ρ), π) ∈ [X/G],

we take a trivializing cover {Ti → T}i∈I such that sections si of γ exist. For each i, we get a map of
S-stacks

ti := x ◦ π1 ◦ π ◦ si : Ti → X ,

where π1 is as in the statement of Lemma 1.7.4. As before, we have (unique) elements g of Gij such
that si|Tij = g · sj |Tij . By GT -equivariance of π1 ◦ π, if we evaluate in y ∈ Tij , we get that ti|Tij (y) is
equal to

x ◦ π1 ◦ π(g · sj |Tij
(y)) = x(g · (π1 ◦ π ◦ sj |Tij

(y))) = α−1
(g,xj)

(x ◦ π1 ◦ πP ◦ sj |Tij
(y)),

where xj = π1 ◦ π ◦ sj |Tij (y). To be more explicit, for all i, j we have the isomorphism

α(g,xj) : tj |Tij
(y)→ ti|Tij

(y).

By the condition of associativity of α and the uniqueness of the g’s, we get descent data for X : being
a stack, the descent is effective and ti glue to an S-map t : T → X . Furthermore, the solid diagram

P

X ×X V T

X X

γ

π1◦π

pr2

pr1 t

x

2-commutes: indeed, if we evaluate in ∈ P , locally expressed as zi ∈ Pi, one gets

ti ◦ γ(zi) = x ◦ π1 ◦ π ◦ si ◦ γ(zi).

Moreover, if we consider the unique element gi ∈ Gi such that si ◦ γ(zi) = gi · zi then

ti ◦ γ(zi) = x(gi · (π1 ◦ π(zi))) = α−1
(gi,π1◦π(zi))(π1 ◦ π(zi)).
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1. Preliminary Notions The algebraic stack [X/G]

Therefore, again since α is associative and from the uniqueness of the gi’s, the maps α(gi,π1π(zi)’s glue
to a global isomorphism

α−1
(gz,π1π(z))

: x(π1π(z))→ t ◦ γ(z)

and this is the natural isomorphism that makes the previous solid diagram 2-commute. By the
property of fiber product we get an X -map

h : P → X ×X T.

We claim that (idT , h) gives an isomorphism between

(T, (γ : P → T, ρ), π)→ (T, (pr2 : X ×X T → T, ρT ), πT ).

Since both π and πT ◦ h complete the diagram

P

X ×S V T

X S,

γ

π1◦π

π2

π1 ρ◦t

ρ◦x

the universal property of the fiber product X ×S T implies that the diagram

P X ×X T

X ×S T

π

h

πT

commutes. Finally, for the GT -equivariance of h, we consider the square

GT ×T P GT ×T (X ×X T )

P X ×X T.

idG×h

ρ ρT

h

For all z ∈ P , putting z = π1π(z),

(g, z)

ρ(g, z) (π1π(ρ(g, z)), γ(ρ(g, z)), α
−1
(g′

ρ(g,z)
,π1π(ρ(g,z)))

)

ρ

h

Observe that we have the equality

(π1π(ρ(g, z)), γ(ρ(g, z)), α
−1
(g′

ρ(g,z)
,π1π(ρ(g,z)))

) = (χ(g, z), γ(z), α−1
g′
ρ(g,z)

,χ(g,z)))

which follow from the GT -equivariance of π1π and from the GT -invariancy of γ. On the other hand,

(g, z) (g, z, γ(z), α−1
(g′

z,z)
)

(χ(g, z), γ(z), α−1
(g′

z,z)
◦ α(g,z)),

idGT
×h

ρT

but since
g′zi · zi = si ◦ γ(zi) = si ◦ γ(g · zi) = g′ρ(g,zi)(g · zi)
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we have g′z = g′ρ(g,z) · g and by associativity of α

α(g,z) ◦ αg′
ρ(g,z)

,χ(g,z)) = α(g′
z,z)

,

which means the equality
h ◦ ρ = ρT ◦ (idGT

× h).

Being a map between torsors, h is a GT -isomorphism. Hence FT is also essentially surjective.
(Step 4) In this step we prove the final part of the thesis of the Theorem.
Consider the morphism

(idX , δ) : (X, q2 : G×S X → X, (χ, pr2))→ (X, pr2 : X ×X X → X, (ρX , π))

where the first is the trivial torsor and δ : G×S X → X ×X X is the map which sends

(g, z) 7→ (χ(g, z), q2(g, z), α(g,z)).

Since α is associative, δ is GX -equivariant and it is obvious that it makes the diagram

G×S X X ×X X

X ×S X
(χ,q2)

δ

π

commute. This coincide exactly with the 2-commutativity of the diagram

X X

[X/G].

x

This completes the proof.

1.8. Coarse Moduli Space

Definition 1.8.1. Let S be a scheme and X/S be an algebraic stack over S. A coarse moduli space
for X is a morphism π : X → X to an algebraic space over S such that:

1. π is initial for maps to algebraic spaces over S. That is, if g : X → Z is a morphism from X to
an algebraic space Z, there exists a unique morphism f : X → Z such that g = f ◦ π.

2. For every algebraically closed field k the map |X (k)| → X(k) is bijective, where X (k) denotes
the set of isomorphism classes in X (k).

The main result on coarse moduli spaces is the following.

Theorem 1.8.2 (Keel-Mori). Assume S is a scheme and that X is an algebraic stack locally of finite
presentation over S with finite diagonal. Then there exists a coarse moduli space π : X → X. In
addition:

1. Assume that S is locally noetherian; then X/S is locally of finite type, and if X/S is separated,
then X/S is also separated.

2. π is proper, and the map OX → π∗OX is an isomorphism.

3. If X ′ → X is a flat morphism of algebraic spaces, then π′ : X ′ := X ×X X ′ → X ′ is a coarse
moduli space for X ′.

Proof. See [Ols16], Theorem 11.1.2, or for more details the original article [KM97].
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Moreover, we have that the formation of a coarse moduli space behaves well under flat base change.

Lemma 1.8.3. Let X → X be a proper quasi-finite morphism, where X is a Deligne-Mumford stack
and X a noetherian scheme. Let X ′ → X be a flat morphism of schemes, and denote X ′ := X ′×X X .

1. If X is the moduli space of X , then X ′ is the moduli space of X ′.

2. If X ′ → X is also surjective and X ′ is the moduli space of X ′, then X is the moduli space of X .

Proof. See [AV02], Lemma 2.2.2.

We make now a brief digression about separated Deligne-Mumford stacks and their local properties.

Theorem 1.8.4. Let S be a locally noetherian scheme and let X/S be a Deligne-Mumford stack
locally of finite type and with finite diagonal. Let π : X → X be its coarse moduli space. Let x̃→ X
be a geometric point with image x̄ : X in X. Let Gx̃ be the automorphism group of x̃, which is a finite
group since X is Deligne-Mumford. Then there exists an étale neighbourhood Ux̄ → X of x̄ (Ux̄ can
be chosen as the strictly henselian neighbourhood of x̄) and there exists a finite Ux̄-scheme Vx̃ → Ux̄

with action of Gx̃, such that
X ×X Ux̄

∼= [Vx̃/Gx̃].

Proof. See [Ols16], Theorem 11.3.1.

We will see a sort of generalization of the previous proposition in the case of tame stacks, see
Theorem A.0.11 in the Appendix.

1.9. Quasi-coherent sheaves

It is possible to extend the notion of sheaf to the more general context of stacks. This is what we do
in the rest of the chapter.

Definition 1.9.1 (Category (Sch/X )). Let X/S be an algebraic stack. Define (Sch/X ) as the
category containing as objects pairs (T, t) where T is a scheme over S and t : T → X is a morphism
of stacks over S. The morphisms (T ′, t′) → (T, t) in (Sch/X ) are pairs (f, f b) where f : T ′ → T is a
morphism of S-schemes and f b : t′ → t ◦ f is an isomorphism of functors T ′ → X .

We are now interested in defining a site on X , called the Lis-Ét(X ) (the lisse-étale site on X ).
This is the full subcategory of (Sch/X ) consisting of the pairs (T, t) where t is a smooth morphism,
and a covering is a collection {(fi, f b

i ) : (Ti, ti) → (T, t)} such that {fi : Ti → T} is an étale cover of
T .

Definition 1.9.2. We define the sheaf OX on Lis-Ét(X ) by associating OT (T ) to (T, t).

Definition 1.9.3. A sheaf of OX -modules on Lis-Ét(X ) is the data ({F(T,t)}, {Φ(f,fb)}). F(T,t) is an
étale sheaf ofOT modules on T for each (T, t) ∈ Lis-Ét(X ). For each morphism (f, f b) : (T ′, t′)→ (T, t)
in Lis-Ét(X ), Φ(f,fb) : f

∗F(T,t) → F(T ′,t′) is a morphism of sheaves satisfying two condition:

▶ The Φ(f,fb) need to be compatible with composition, that is Φ(f,fb)◦(g,gb) = Φ(g,gb) ◦ g∗Φ(f,fb).

▶ If we have (f, f b) with f étale, then the map Φ(f,fb) has to be an isomorphism.

Morphism of sheaves
({F(T,t)}, {Φ(f,fb)})→ ({E(T,t)}, {Ψ(f,fb)})

are a collection λ(T,t) : F(T,t) → E(T,t) for each (T, t) such that the diagram

f∗F(T,t) f∗E(T,t)

F(T ′,t′) E(T ′,t′)

f∗λ(T,t)

Φ
(f,fb)

Ψ
(f,fb)

λ(T ′,t′)

commutes.
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Definition 1.9.4. We say that a sheaf on Lis-Ét(X ) of OX -modules F is cartesian if for every mor-
phism (f, f b) : (T ′, t′)→ (T, t) the map of O′

T -modules Φ(f,fb) : f
∗F(T,t) → F(T ′,t′) is an isomorphism.

A sheaf is quasi-coherent if F is cartesian and for every (T, t) ∈ Lis-Ét(X ) the sheaf F(T,t) is a
quasi-coherent sheaf on T .

Definition 1.9.5. A sheaf of OX -modules F is said to be invertible, or a line bundle, if each F(T,t)

is an invertible sheaf on T . The group of line bundles over X is called Picard group and it is denoted
as Pic(X ).
Observation 1.9.6. Alternatively, the Picard group can be defined as the sheaf cohomology group
H1(X ,O∗

X ), as in the classic setting. However, in this thesis we will not use this fact.

1.10. Quasi-coherent sheaves on BG

Schemes in this section are considered with the étale topology. In the following chapters we study
pullbacks of coherent sheaves on BG, and so it is useful to classify quasi-coherent shaves on BG. We
will prove the following.

Theorem 1.10.1. Let G a smooth group scheme over k. There is an equivalence of categories

{Quasi-coherent sheaves on BG} ↔ {Representations of G}.

We follow the setting of [Sch].

Definition 1.10.2. Let V be a finite-dimensional k-vector space. Then we can think V as quasi-
coherent sheaf on (Sch/k). We associate to t : T → k the OT -module V ⊗k OT . We define Autk(V )
as group scheme to be

Autk(V ) : (Sch/k)op → (Grp)

(t : T → k) 7→ AutT (VT ) = AutT (V ⊗k OT ),
(1.11)

when we mean automorphism as the quasi-coherent sheaf over T .
A morphism f : T → T ′ over k is mapped to AutT (t

∗V )→ AutT ′(t′∗V ), σ 7→ f∗σ.

Definition 1.10.3. A morphism of functors G → Autk(V ), where V is a k-vector space, is said to
be a representation of the group scheme G over the field k.

We denote with (Repr)k (G) the category of representations of group schemes G over k. The objects
are the representations (V,Φ), i.e. V is a k-vector space and Φ: G → Autk(V ) is the morphism of
representation. The arrows (V,Φ) → (W,Ψ) are G-equivariant maps h : V → W , i.e., a k-linear map
such that for all g ∈ G(T ), the diagram

VT VT

WT WT

Φ(g)

hT hT

Ψ(g)

commutes, where hT is the pullback of h via T → {pt}.
To prove the equivalence of Theorem 1.10.1, we use an intermediate category. This category is

extremely important, as we will see in Observation 1.10.8.

Definition 1.10.4. Let S be a scheme and G a smooth group scheme over S and X a scheme over
S on which G acts via ρ : G ×S X → X. A G-equivariant quasi-coherent sheaf on X is a pair (F, σ)
where F is a quasi-coherent sheaf on X and σ : ρ∗F → pr∗2F is an isomorphism such that for any
S-scheme T and g, g′ ∈ G(T ), the diagram of quasi-coherent sheaves on T ×S X

ρ∗gρ
∗
g′(pr∗2F ) ρ∗g(pr∗2F )

ρ∗g′g(pr∗2F ) pr∗2F

ρ∗
gσg′

∼= σg

σg′g

commutes, where
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1. Preliminary Notions Quasi-coherent sheaves on BG

▶ pr2 : T ×S X → X is the projection,

▶ ρg is pr1 × (ρ ◦ (g × idX)) : T ×S X → T ×S X the map induced by the action, and

▶ σg : ρ
∗
gpr∗2F → pr∗2F is the pullback of σ via map g × idX .

Denote the category with object quasi-coherent G-equivariant sheaves on a scheme X by (QcohG(X )).
A morphism (F, σ)→ (E, τ) is a morphism f : F → E of quasi-coherent sheaves on X such that

ρ∗F pr∗2F

ρ∗E pr∗2E

σ

ρ∗f pr∗2f

τ

commutes.

Observation 1.10.5. Notice that the definition given before is just an intricate way to say this:
A quasi-coherent sheaf F on S extends naturally to a functor

F : (Sch/S )
op −→ (Set)

(f : T → S) 7→ F (T ) := (f∗F )(T )

Each F (T ) has the structure of an O(T )-module.
Then, an action of G on F is an O-linear action of the functor

G : (Sch/S )
op −→ (Grp)

on F . In other words, for each f : T → S we have an action of the group G(T ) on the O(T )-module
F (T ), and this action is functorial in T → S.

Now we state a Lemma that we will use in the proof of the Theorem 1.10.1.

Lemma 1.10.6. Let X, Y be S-schemes with G-actions aX : G ×S X → X and aY : G ×S Y → Y
respectively and let f : Y → X be a G-equivariant morphism of schemes. Let (F, σ) be a G- equivariant
quasi-coherent sheaf on X, then (f∗F, (idG × f)∗σ) is a G-equivariant quasi-coherent sheaf on Y .

Proof. Firstly, f∗F is a quasi-coherent sheaf on Y . Then (idG × f)∗σ is an isomorphism from

(idG × f)∗a∗XF ∼= (aX ◦ (idG × f))∗F = (f ◦ aY )∗F ∼= a∗Y (f
∗F )

to
(idG × f)∗pr∗XF ∼= (prX ◦ (idG × f))∗F = (f ◦ prY )

∗F ∼= pr∗Y (f
∗F )

Let T a S-scheme and g, g′ ∈ G(T ). If we pull back the commutative diagram on T×SX via (idT ×f),
the commutativity of the diagram of quasi-coherent sheaves on T ×S Y is immediate, hence we have
the thesis.

The next proposition is the reason for introducing G-equivariant quasi-coherent sheaves.

Proposition 1.10.7. Let G be a smooth group scheme over k. There is an equivalence of categories

(QcohG(pt))↔ (Reprk(G)). (1.12)

Proof. Let ρ : G→ pt denote the trivial map. Let (F, σ) be an object of (QcohG(pt)), then we can see
F as a k-vector space and σ ∈ AutG(ρ

∗F ) (since in this case ρ ≡ pr). It defines a scheme morphism
ρσ : G → Autk(F ) sending a g ∈ G(T ) to σg ∈ AutT (g

∗ρ∗F ) ∼= AutT (t
∗F ) where t : T → k. The

map ρg is a group homomorphism. Actually σg′g = σgσg′ since the G-equivariance structure. Then
ρσ : G→ Autk(F ) is a representation.

Given a representation ρ : G → Autk(V ), the k-vector space V naturally gives a quasi-coherent
sheaf on {pt}. Moreover, ρ̃ := ρ(idG) is an element of AutG(ρ

∗V ) such that G(T ) → AutT (VT ),
g 7→ ρ(g) = g∗ρ̃ is a group homomorphism since ρ̃ satisfies (g′g)∗ρ̃ = g∗ρ̃g′∗ρ̃ for g, g′ ∈ G(T ).
Therefore (V, ρ̃) is a G-equivariant sheaf on pt.

25



Quasi-coherent sheaves on BG 1. Preliminary Notions

We see now that the functor we have defined on the objects sends arrows into arrows. Let
f : (F, σ)→ (E, τ) be a morphism in QcohG(pt), and consider the associated representation ρg : G→
Autk(F ) and ρτ : G→ Autk(E). Then we have

ρ∗F pr∗F

ρ∗E pr∗E

σ

ρ∗f pr∗f

τ

,
and so the induced linear map f satisfies for every k-scheme T and for all g ∈ G(T ) τg◦fT = fT ◦σg

obtained by pulling back along g. So we have indeed a morphism of representations.
For the other direction, given a map h : V → W between representations Φ: G → Autk(V ) and

Ψ: G→ Autk(W ), it induces a morphism (V,Φ(e))→ (W,Ψ(e)). The first construction is the inverse
of the other one, so (QcohG(pt)) is equivalent to (Reprk(G)).

One might wonder why we decide to prove Theorem 1.10.1 passing through this intermediate
category. The reason is that, as we will see, the quasi-coherent sheaves over the quotient stack [U/G]
are exactly the G-equivariant sheaves over U , see Observation 1.10.8.

The following result, which is a particular case of the previous assertion, is exactly what we need
to conclude the proof of Theorem 1.10.1.

Proof. By the previous proposition, it is enough to construct an equivalence

{Quasi-coherent sheaves on BG} ↔ (QcohG(pt)).

(Step 1) In this step, given an object (F, σ) of (QcohG(pt)), we construct a quasi-coherent sheaf F
on BG by giving data {F(T,t),Φ(f,fb)}.

(Step 1.1) Let (T, t) be an object in Lis-Ét(BG) and P the G-bundle on T defined by t : T → BG.
We define F(T,t) as follows. Let f : pt→ BG be the morphism defined by the trivial bundle, then we
have the pullback square

P T

pt BG

b t

f

This square is a pull back as it is proved in the proof of Theorem 1.7.5.
By Lemma 1.10.6, the pullback (b∗F, (idG × b)∗)σ is again a G-equivariant quasi-coherent sheaf

on P. We will descend it along P → T . Write a : G ×k P → P for the G-action on G-bundle P,
then the map a × pr2 : G ×k P → P ×k P is an isomorphism. Therefore, the map τ defined as
τ := ((a × pr2)−1)∗(idG × b)∗σ is an isomorphism pr∗1b∗F → pr∗2b∗F . Moreover, τ satisfies cocycle
condition, because of the G-equivariance structure on b∗F . Hence, (b∗F, τ) is a descent datum.
Observe that the map P → T is an fppf morphism, and so this descent datum is effective, so we
obtain a quasi-coherent sheaf F(T,t) on T .

(Step 1.2) Let (f, f b) : (T ′, t′) → (T, t) be a morphism in Lis-Ét(BG). The morphism (f, f b) is
the composition

(T ′, P ′) (T ′, f∗P) (T, P),(idT ′ ,fb) (f,id)

and so we will construct the isomorphism Φ(f,fb) : f
∗F(T,t) → F(T,t) via Φ(idT ′ ,fb) ◦ f∗Φ(f,id).

Consider (id, f b) : (T ′,P ′) → (T ′,P). Because G-bundles are locally trivial, we consider an étale
cover U → T ′, where both bundles are trivial. An isomorphism of trivial G-bundles is given by
multiplication mg by a certain element g ∈ G(U). In the diagram

G×k U G×k U U

pt BG

mg

b

e
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the square is a pullback square and e is the section given by the unit in G. The sheaves F(U,P)

and F(U,P′) equal e∗b∗F and e∗m∗
gb

∗F respectively and we define isomorphism Φ(idU ,mg) as

e∗m∗
gb

∗F ∼= (b ◦mg ◦ e)∗F ∼= ρ∗gFU → FU
∼= e∗b∗F.

By descent for an étale cover, this also defines Φ(idT ′ , f b). Consider (f, id) : (T ′, f∗P) → (T,P).
We have the diagram

f∗P T ′

P T

pt BG

b′ f

b

where all squares are pullback squares. By definition of F(T ′,f∗P) its pullback to f∗P is defined by
(b ◦ b′)∗F , but also the pullback of f∗F(T,P) to f∗P is by commutativity of the upper square pulling
back along b′ of b∗F . Define Φ(f,id) to be the natural isomorphism between F(T ′,f∗P) and f∗F(T,P).

(Step 1.3) Because we have mapped all morphisms to isomorphisms, F is cartesian and since all
F(T,P) are quasi-coherent, this data yields a quasi-coherent sheaf F on BG.

(Step 2) In this step, given a quasi-coherent sheaf F on BG (i.e. the data of {F(T,t),Φ(f,fb)}), we
provide a construction of a G-equivariant sheaf over (pt). Let G̃ be the trivial G-bundle on pt, and
consider the quasi-coherent sheaf F := Fpt,G̃ on pt. Let ρ : G→ pt be the trivial map. The objective
is to construct an automorphism σ of ρ∗F such that (F, σ) ∈ (QcohG(pt)).

Consider G×k G as a G-bundle on G via pr2. Let m : G×k G→ G×k G, (g, h) 7→ (gh, h) denote
this morphism of G-bundles over G. It provides an isomorphism Φ(id,m) of F(G,G×kG). Also, there is a
morphism (p, pb) : (G,G×kG)→ (pt, G̃) where pb is an isomorphism induced by (p◦ t)∗ ∼= t∗p∗, giving
an isomorphism Φ(p,pb). At this point, we define the isomorphism σ ∈ AutG(p

∗F ) as the composition

p∗F(pt,G̃) F(G,G×kG) F(G,G×kG) p∗F(pt,G̃).
Φ

(p,pb) Φ(id,m)
Φ−1

(p,pb)

For a k-scheme T and g, g′ ∈ G(T ), we have for σg = g∗σ that σg ◦ σ′
g = σg′g, because g∗Φ(id,m)

is the map induced by mg. Hence, σ gives G-equivariance structure for F .
Step 3: For a morphism λ(T,t) between quasi-coherent sheaves on BG defined by {F(T,t),Φ(f,fb)}

and {E(T,t),Ψ(f,fb)} we take the (pt, G̃) component to define the morphism λ(pt,G̃) : F(pt,G̃) → E(pt,G̃)

of G-equivariant quasi-coherent sheaves. Vice versa, given a morphism h : (F, σ) → (E, τ) of G-
equivariant quasi-coherent sheaves, we built λ(T,P) by descending b∗h between quasi-coherent sheaves
on P. These constructions give an equivalence.

Observation 1.10.8. At the same way, let [U/G] be a quotient stack. It is easy to prove that there
is an equivalence

{Quasi-coherent sheaves on [U/G]} ↔ (QcohG(U)).

F 7→ (Fu, σidG×ρ : ρ
∗(Fu)→ pr∗(Fu)),

where u : U → [U/G] is the tautological torsor. For the proof we use exactly the same argument as in
the previous proof. To streamline the presentation, the details are omitted.

Definition 1.10.9. Let Ḡ denote the group of characters χ : G → Gm,R consisting of Spec(R)-
morphisms of group schemes, with Spec(R) connected.

We can generalize the previous result in the case of the quotient stack [Spec(R)/G], where G is a
R-group scheme acting trivially on the spectrum of the ring R.

Corollary 1.10.10. If G is a smooth R-group scheme acting trivially on R, where Spec(R) is a
connected scheme, then we have the isomorphism

Pic([Spec(R)/G]) ∼= Pic(R)× Ḡ.
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CHAPTER 2
The Stack of the Elliptic Curves

In this chapter we review some basic facts about elliptic curves and after we analyze the stack of
elliptic curvesM1,1.

Definition 2.0.1 (Curve). A curve over an algebraically closed field k is an integral regular scheme
of dimension 1, proper over k. The genus of a curve C over k is defined to be dimkH

1(C,OC).

Note that implies in particular that the morphism C → Spec(k) is smooth.

Definition 2.0.2. A pair (E,O), where E is a genus 1 curve over k = k̄ together with a distinguished
k-valued point O ∈ E, is called elliptic curve.

Definition 2.0.3. An elliptic curve over an arbitrary scheme S is a smooth proper morphism ρ : E →
S together with a chosen section e : S → E so that the pullback of (E, e) to any geometric fiber is an
elliptic curve.

Definition 2.0.4. Let M1,1 denote the fibered category over Spec(Z) whose objects are collections
of data (S, (E, e)), where S is a scheme and (E, e) is an elliptic curve over S. A morphism

(S′, (E′, e′))→ (S, (E, e))

is a pair of morphisms (f, g) fitting into a cartesian diagram

E′ E

S′ S

g

f

such that g ◦ e′ = e ◦ f . The projection

M1,1 → (Schemes)

(S, (E, e)) 7→ S

makes M1,1 a fibered category over the category of schemes.

Definition 2.0.5. Let S be a scheme. We denote withM1,1,S :=M1,1×S the fibered category over
the category of S-schemes. Explicitly, for each S-scheme T , M1,1,S(T ) is the groupoid of the elliptic
curves over T .

The main theorem of this chapter is the following.

Theorem 2.0.6. The fibered category M1,1 is a separated Deligne-Mumford stack, with respect to
the fpqc topology, of finite type over Spec(Z).

We prove this theorem in sections below. Observe that we focus on M1,1 because, once we have
deduced its properties, the analogous result forM1,1,S (with S a general scheme) immediately follows.

Corollary 2.0.7. M1,1,S is a separated Deligne-Mumford stack, with respect to the fpqc topology,
of finite type over S.

Proof. Obvious, since all these properties are satisfied by M1,1 in light of Theorem 2.0.6 and are
stable under base change.



Elliptic curves over algebraically closed field 2. The Stack of the Elliptic Curves

2.1. Elliptic curves over algebraically closed field

From now on throughout this section we assume that k = k̄ is an algebraically closed field. In this
section we review the classical theory for elliptic curves over an algebraically closed field, following the
approach of Silverman’s The Arithmetic of Elliptic Curves ([Sil09]), mostly for what concerns Chapter
3. This is just a reminder, so we omit the majority of proofs. There are two reason for doing so.
First of all, we need to fix once and for all the notation about elliptic curves we use in all the thesis
(for example in Chapter 3). Secondly, we want to emphasize the analogies with the more general case
discussed in Section 2.3.

Let P2
k be the projective plane with coordinates [x , y , z] and let E be the closed subscheme defined

by the equation
Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X

2Z + a4XZ2 + a6Z
3. (2.1)

This is well known as the Weierstrass equation. Here O = [0, 1, 0] is the base base point and the
coefficients a1, . . . , a6 ∈ k̄.

To ease notation, we generally write the Weierstrass equation for our elliptic curve using non-
homogeneous coordinates x = X/Z and y = Y/Z,

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.2)

always remembering that there is an extra point O = [0, 1, 0] not belonging to this affine hyperplane.
Define

b2 = a21 + 4a2,

b4 = a1a3 + 2a4,

b6 = a23 + 4a6,

b8 = −a1a3a4 − a24 + a21a6 + a2a
2
3 + 4a2a6,

(2.3)

and the discriminant
∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6. (2.4)

We also define quantities

c4 = b22 − 24b4,

c6 = −b32 + 36b2b4 − 216b6,

j = c34/∆

ω =
dx

2y + a1x+ a3
=

dy

3x2 + 2a2x+ a4 − a1y
.

(2.5)

One easily verifies they satisfy the relations

4b8 = b2b6 − b24,

1728∆ = c34 − c26.
(2.6)

Definition 2.1.1. The quantity ∆ is the discriminant of the Weierstrass equation, the quantity j is
the j-invariant of the curve, and ω is the invariant differential associated to the Weierstrass equation.

Proposition 2.1.2. 1. The curve given by a Weierstrass equation satisfies:

▶ It is non singular if and only if ∆ ̸= 0.

▶ It has a node if and only if ∆ = 0 and c4 ̸= 0.

▶ It has a cusp if and only if ∆ = c4 = 0.

Moreover if the curve is singular there is exactly one singular point.
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2. Two elliptic curves are isomorphic over k̄ if and only if they both have the same j-invariant.

3. Let j0 ∈ k̄. There exists an elliptic curve defined over K(j0) whose j-invariant is equal to j0.

Proof. See Proposition 3.1.4. of [Sil09].

Proposition 2.1.3. Let E be a curve defined by a Weierstrass equation. Then the associated invariant
differential ω has neither zeros nor poles, i.e. div(ω) = 0.

Proof. See Proposition 3.1.5. of [Sil09].

In order to connect the notion of elliptic curve with the previous quantities defined, we use the
Riemann-Roch theorem to show that every elliptic curve can be written as a plane cubic, and con-
versely, every smooth Weierstrass plane cubic curve is an elliptic curve.

We give the whole proof, so the reader will be able to appreciate the similarities with the more
general case expressed by the theorem 2.3.4.

Theorem 2.1.4. Let E be an elliptic curve defined over k.

1. There exist functions x, y ∈ k(E) such that the map

Φ: E → P2

Φ = [x, y, 1],
(2.7)

gives an isomorphism of E/k onto a curve given by a Weierstrass equation

C : Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3,

with coefficients a1, . . . , an ∈ k and satisfying Φ(O) = [0, 1, 0].

2. Any two Weierstrass equations for E as in (1) are related by a linear change of variables of the
form

X = u2X ′ + r,

Y = u3Y ′ + sX ′ + t.
(2.8)

with u ∈ k∗ and r, s, t ∈ k.

3. Conversely, every smooth cubic curve C given by a Weierstrass equation as in (1), is an elliptic
curve defined over k with base point O = [0, 1, 0].

Proof. (1) We look at the vector space L(n(O)) for n = 1, 2, . . .. By the Riemann-Roch theorem,
since g = 1, we have

l(n(O)) = dimL(n(O)) = n for all n ≥ 1. (2.9)

Thus we can choose functions x, y ∈ k(E) so that {1, x} is a basis for L(2(O)) and so that {1, x, y}
is a basis for L(3(O)). Note that x must have a pole of exact order 2 at O (if the order had been at
most 1, then the vector space L((O)) would have had dimension 1, absurd). Similarly, y must have a
pole of exact order 3 at O.

Now we observe that L(6(O)) has dimension 6, but it contains the seven functions 1, x, y, x2, xy, y2, x3.
It follows that there is a linear relation

A1 +A2x+A3y +A4x
2 +A5xy +A6y

2 +A7x
3 = 0, (2.10)

where the coefficients belongs to k. Note that A6A7 ̸= 0, since otherwise every term would have a
pole at O of a different order, and so all the Aj ’s would vanish. Replace x and y by −A6A7x and
A6A

2
7y respectively, and dividing by A3

6A
4
7, we get a cubic equation in Weierstrass form. This gives a

map

Φ: E → P2

Φ = [x, y, 1],

whose the image C lies in the locus described by a Weierstrass equation.
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Note that Φ: E → C is a morphism since for a smooth curve a rational map is defined at every
point (see Proposition 2.2.1 of [Sil09]) and that is surjective, since every morphism of curves is constant
or surjective (see Proposition 2.2.3 of [Sil09]). Further we have Φ(O) = [0, 1, 0], since y has an higher-
order pole than x at the point O.

The next step is to show that the map Φ: E → C ⊂ P2 has degree-one, or equivalently, to show
that k(E) = k(x, y). Consider the map [x, 1] : E → P1. Since x has double pole at O and no other
poles, we know this map has degree 2. Thus [k(E) : k(x)] = 2. Similarly, the map [y, 1] : E → P1 has
degree 3, and so [k(E) : k(x, y)] = 3. Therefore [k(E) : k(x, y)] divides both 2 and 3, so it must be
equal to 1.

Next we show that C is smooth. Suppose that C is singular. Then for Proposition 2.2.2 of [Sil09],
there is a rational map Ψ: C → P1 of degree one. It follows that the composition Ψ ◦ Φ: E → P1 is
a map of degree one between smooth curves, so is an isomorphism. This contradicts the fact that E
has genus 1. Therefore, C is smooth and the map Φ is an isomorphism between E and C.

(2) Let {x, y} and {x′, y′} be two sets of Weierstrass coordinate functions on E. Then x and x′

have poles of order 2 at O, and y and y′ have poles of order 3 at O. Hence {1, x} and {1, x′} are both
bases for L(2(O)), and similarly {1, x, y} and {1, x′, y′} are both bases for L(3(O)). Thus there are
constants

u1, u2 ∈ k∗ and r, s2, t ∈ k

such that {
x = u1x

′ + r,

y = u2y
′ + s2x

′ + t.

Since both (x, y) and (x′, y′) satisfy Weierstrass equations in which the Y 2 and the X3 terms have
coefficient 1, we have u3

1 = u2
2. Letting u = u2

u1
and s = s2

u2 puts the change of variables formula into
the desired form.

(3) Let E be given by a Weierstrass equation. We have seen in Proposition 2.1.3 that the differential
ω ∈ ΩE has neither zeros nor poles, so div(ω) = 0. The Riemann-Roch theorem then tells us that

2genus(E)− 2 = deg(div(ω)) = 0,

so E has genus 1, and taking [0, 1, 0] has the base point makes E into an elliptic curve.

2.2. The Stack M1,1

In this section we prove that M1,1 is a stack in the fpqc topology on (Sch). Before doing this, we
need some preliminaries. We start developing an important tool for reducing problems about elliptic
curve over arbitrary basis to elliptic curves over noetherian schemes.

Lemma 2.2.1. The following results hold.

▶ Let ρ : E → Spec(R) be quasi-compact, separated, smooth morphism of relative dimension 1.
Then it is pulled back from such a morphism over noetherian affine scheme ρ0 : X0 → Spec(R0).

▶ If ρ in addition has a section e : Spec(R)→ E, it can be arranged to be pulled back from a section
Spec(R0)→ X0.

▶ Let (E, ρ : E → Spec(R), e) be an elliptic curve over an affine scheme. Then it is pulled back
from an elliptic curve over noetherian affine scheme.

Proof. (1) We can write the ring R as a filtered colimit over a poset I of subrings Ri which are of finite
type over Z, so in particular noetherian, and thus Spec(R) ∼= Lim←−− Spec(Ri), see [GW10] Proposition
10.53.

So we are in the situation of [Sta22] Tag [01ZM ]. By possibly restricting to a cofinal subset
I we may assume I to have an initial object 0 ∈ I and we might assume to have a morphism
ρ0 : X0 → Spec(R0) of finite presentation such that the morphism ρ is the pullback of ρ0 along the
projection Spec(R) → Spec(R0). Now we are in the situation of [Sta22] Tag [0C0C], so by possibly
restricting to a cofinal subset I again, we may assume that ρ0 is smooth. Moreover, by restricting
again we can assume that ρ0 is separated too.
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(2) Using [Sta22] Tag [01ZM ] for morphisms, we obtain also a map e0 : Spec(R0)→ X0 of schemes
over Spec(R0), so a section of ρ0, whose pullback to Spec(R) is precisely e.

(3) Now we can apply [Sta22] Tag [0204] to conclude that we also may assume ρ0 to be proper.
Since its pullback ρ is of relative dimension 1, so is ρ0. Our next goal is to show that the geometric
fibers of ρ0 are connected. We can use [Sta22] Tag [0CC1] to conclude that the image of Spec(R) is
dense in Spec(R0) since R0 is a subring of R. Consider now any geometric point Spec(k)→ Spec(R0).
Since R0 is a noetherian ring, this implies that there is a connected open U containing the image of
Spec(k), by [Sta22] Tag [04MF ]. Since it is open, by density, the image of some point (and thus also
of a geometric point) Spec(L)→ R belongs to U , so we have a commutative diagram

Spec(k) U Spec(R0)

Spec(L) Spec(R).

⊂

We mean that L is some algebraically closed field. The pullback ρY : Y := X0 ×Spec(R0) U → U of
ρ0 is now again a proper morphism with a section, smooth of relative dimension 1 over a noetherian
connected scheme. Over the geometric point Spec(L) → U , it is connected since by assumption
(X0 ×Spec(R0) U)×U Spec(L) ∼= E ×Spec(R) Spec(L) is an elliptic curve over L.

Now consider the Stein factorization Y Y ′ U
g of the proper morphism of noetherian

scheme ρY : Y → U . By [Sta22] Tag [034E] being reduced is local in the smooth topology, and
therefore the fibers of the smooth map ρy are geometrically reduced. We can in particular deduce
that g : Y ′ → U is étale, by [FGI+05], Proposition 8.5.16. Thus also Y ′×U Spec(L)→ Spec(L) is étale,
and so Y ′ ×U Spec(L) is a finite disjoint union of copies of Spec(L). Next, by Zariski’s connectedness
Theorem, the fibers of Y → Y ′ are non-empty and connected. Since being non-empty is compatible
with faithfully flat base change, we conclude that also the fibers of Y ×U Spec(L)→ Y ′×U Spec(L) are
non-empty. Since Y ×U Spec(L) is connected, we conclude that Y ′×U Spec(L) ∼= Spec(L). Moreover,
by definition of Stein factorization, the map g : Y ′ → U is finite, thus we can apply [Sta22] Tag [02KG]
to conclude that g∗OY is a vector bundle on U . Employing cohomology and base change and the fact
that the pullback of g to Spec(L) is an isomorphism, we conclude that g∗OY ′ is a vector bundle of
rank 1 on the connected scheme U . Thus, also the pullback of g to Spec(k) is an isomorphism, and
using Zariski’s connectedness theorem once again implies that the fibers Y → U are geometrically
connected.

So we know that the geometric fibers of ρY are geometrically connected. Again, by [Har13],
Example 3.10.0.3, the geometric fibers are regular of dimension 1. Thus they are in particular normal
([Sta22] Tag [0569]) and thus ([Sta22] Tag [033M ]) integral since we have already shown that they
are connected.

This implies that the geometric fibers of ρY (and thus also of ρ0) are curves. We still need to
determine the genus of these curves. With the notation above, we know that the curve Y ×USpec(L)→
Spec(L) has genus 1. As explained in [Gro67] Theorem 7.9.4, the Euler characteristic of the geometric
fibers is constant on the connected scheme U . By [?] Corollary 3.3.21, we know that H0(Y ×U

Spec(k),OY×USpec(k)) is 1-dimensional, and by Grothendieck’s vanishing theorem cohomology groups
in dimensions ≥ 2 vanish, so we conclude that all the geometric fibers of ρY and thus of ρ0 are indeed
elliptic curves. This complete the proof.

The following lemma will be helpful.

Lemma 2.2.2. Let ρ : C → S be a separated morphism of schemes with a right inverse e : S → C.
Then e is a closed immersion.

Proof. By [Sta22] Tag [01W6], since ρ is separated and ρ ◦ e = idS is proper, then we may conclude
that e is proper. Since e has a left inverse, it is a monomorphism of schemes. Thus by [Sta22], Tag
[04XV ], a proper monomorphism is a closed immersion.

Observe that this lemma applies immediately to elliptic curves. In particular for an elliptic curve
E over an algebraically closed field k, specifying a k-valued point is the same as specifying a closed
point in E (since E is of finite type over Spec(k)).

Our goal will be to prove a descent property for elliptic curves with respect to fpqc morphisms,
and we will reduce it to a descent property of polarized schemes [Ols16], Proposition 4.4.12. We equip
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each elliptic curve (E, ρ, e) over any S scheme with a particular quasi-coherent sheaf, namely with the
ideal sheaf of its section e : S → E. To obtain a polarized scheme, we need to show that this sheaf is
a line bundle and that its inverse is ample. Moreover, we will need its construction to be functorial
in the sense made more precise below. Before actually dealing with elliptic curves, we will show some
more general statements about ideal sheaves.

Definition 2.2.3. Let X be an S-scheme. By an effective Cartier divisor on X/S we mean a closed
subscheme C such that:

1. C is flat over S,

2. the ideal sheaf IC ⊂ OX is an invertible OX -module.

Proposition 2.2.4. Let ρ : C → S be a smooth morphism of relative dimension 1 which is separated
and quasi-compact. Let e : S → C be a section of ρ. The it defines an effective Cartier divisor in C.

Proof. We can apply lemma 2.2.2 to see that it is a closed immersion. In particular it is flat over S.
We still need to show that the corresponding ideal sheaf on C is a locally free OC-module. Firs, this
is a Zariski local statement, so we can assume S to be an affine scheme, say Spec(R). Furthermore,
we can suppose R to be a noetherian scheme for 2.2.1. In these passages we are also using that being
an effective Cartier divisor is stable under base change. The thesis is now obvious through passing to
geometric fibers, see Corollary 1.1.5.2 of [KM85].

To formalize functoriality properties for the ideal sheaf of the section e : S → E of an elliptic curve
(E, ρ, e) over S we need the following proposition.

Proposition 2.2.5. Let (E, ρ, e) be an elliptic curve over S and (E′, ρ′, e′) an elliptic curve over
S′. Let J ⊂ OE and J ′ ⊂ OE′ be the ideal sheaves of e and e′, respectively. Moreover let
(f, g) : (E, ρ, e)→ (E′, ρ, e′) be a morphism of elliptic curves. Then:

1. g∗J ′⊗r ∼= J⊗r for any r ∈ Z, and these isomorphisms are compatible with composition of
morphisms.

2. J−1 is an ample line bundle over S.

Proof. (1) Trivial, since relative effective Cartier divisors behave well under pullbacks (see [KM85],
section 1.1.2), and since in the diagram

S S′

E E′

S S′

f

e e′

g

ρ ρ′

f

(2.11)

the outer and the lower squares are cartesian, hence so is the upper.
(2) To check that J−1 is ample, we use criterion of Corollary 9.6.5 from [GW10], saying that it

is enough to check ampleness in every fiber. Moreover, buy [Sta22] Tag [0D2P ] it suffices to check
ampleness in a fpqc cover, hence we can assume k = k̄. In this case, the thesis follows from classical
results, for example see [Har13] Example 4.3.3.3. Here we identify J−1

Spec(k) with OSpec(k)(eSpec(k)),
and one can prove J−3

Spec(k)
∼= OESpec(k)

(3eSpec(k)) is very ample.

After these preliminaries we are now ready to prove the following theorem.

Theorem 2.2.6. M1,1 is a stack in the fpqc topology on (Sch).

Lemma 2.2.7. Let S be a scheme and F be a category fibered in groupoids over (Sch/S ). Suppose
that the following conditions are satisfied:

▶ F is a stack with respect to the Zariski topology.
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▶ Whenever V → U is a flat surjective morphism of affine S-scheme, the functor

F(U)→ F(V → U)

is an equivalence of categories.

Then F is a stack with respect to the fpqc topology.

Proof. See [Vis04], Lemma 4.25, for a proof.

In order to prove 2.2.6, We will follow this method:

1. We prove thatM1,1 is a prestack in the fpqc topology on (Sch).

2. We prove thatM1,1 is a stack in the Zariski topology on (Sch).

3. We prove thatM1,1 satisfies the second condition of Lemma 2.2.7.

Proposition 2.2.8. M1,1 is a prestack with respect to the fpqc topology on (Sch).

Proof. We need to show that the functor

M1,1(S) M1,1
σ∗
i ({Ui S})σi (2.12)

induced by pullbacks is fully faithful for any fpqc covering {Ui S}σi . We will check faithfullness
first. Let (E, ρ, e) and (E′, ρ′, e′) be two elliptic curves over S and let (id, f), (id, g) : (S, (E, ρ, e))→
(S,E′, ρ′, e′)) be two morphisms in M1,1 which agree on the covering {Ui → S}. More precisely,
we recall that we have chose pullbacks to define functors σ∗

i : M1,1(S) → M1,1(Ui) and require
σ∗
i (f) = σ∗

i (g) for all i ∈ I. Observe the map {σ∗
i E E}τi is an fpqc cover again. The two maps

f, g : E → E′ are equal since they are equal on Ui and the fpqc site is subcanonical (i. e. the
representable presheaves are actually sheaves) after the composition with τi.

Next we want to show that our functor is full. Assume that with the same choice of σ∗
i , we are

given morphisms

((σ∗
i E, σ∗

i ρ, (id, e ◦ σi)), α
−1
pr1,σi

(E) ◦ αpr2,σj
(E)) ((σ∗

i E
′, σ∗

i ρ
′, (id, e′ ◦ σi)), α

−1
pr1,σi

(E′) ◦ αpr2,σj
(E′))

βi

compatible with transition maps, where αf,g(X) : f∗g∗X → (gf)∗X is the canonical isomorphism.
It is easy to check that the pullback pr∗1σ∗

1E is canonically isomorphic to σ∗
i E ×E σ∗

jE, and thus
also βi and βj coincide when pulled back to the fiber product and composed with the corresponding
αi,j ’s. This implies that (using again that {σ∗

i E E}τi is an fpqc covering and that E′ is a sheaf
on the fpqc site) there is a unique map β : E → E′ so that β ◦ τi coincides with the composition

σ∗
i Ei σ∗

i E
′ E′βi τ ′

i . So we have a commutative diagram

σ∗
i E σ∗

i E
′ Ui

E E′ S.

βi

τi τ ′
i

σ∗
i (ρ

′)

σi

β ρ′

For this map to make (id, β) into a morphism of elliptic curves, we need to check ρ′ ◦ β = ρ and
β ◦ e = e′. It is enough to check this fpqc-locally.

ρ′βτi = ρ′τ ′iβi (definition of β)
= σi ◦ σ∗

i (ρ
′) ◦ βi (pullback diagram defining σ∗

i E
′)

= σi ◦ σ∗
i (ρ) (definition of βi)

= ρ ◦ τi (pullback diagram defining σ∗
i (E)).

Similarly, one can check that σ∗
i (β) = βi using the universal property of pullbacks. Similarly, we

have

βeσi = β ◦ τi(id, e ◦ σi) (definition of (id, e ◦ σi)
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= τ ′i ◦ βi ◦ (id, e ◦ σi) (definition of β)
= τ ′i ◦ (id, e′ ◦ σi) (definition of βi)
= e′ ◦ σi (definition of (id, e′ ◦ σi).

Altogether, this proves the fullness and thus we have shown that M1,1 is a prestack in the fpqc
topology.

Proposition 2.2.9. M1,1 is a stack with respect to the Zariski topology.

Proof. We have already shown that M1,1 is a prestack with respect to the fpqc topology, hence the
same is true for the Zariski topology. The only thing we need to show is so the "gluing" property for
elliptic curves for Zariski coverings.

Let S be any scheme and let {Ui → S} be a Zariski covering of S. We want to prove

M1,1(S)→M1,1({Ui → S})

is essentially surjective. Assume that we are given an object with descent data: a family of (Eiρi, ei) ∈
M1,1(Ui) together with isomorphisms of elliptic curves φi,j : pr∗2Ej → pr∗1Ei satisfying the cocycle
condition. We need to construct an elliptic curve E over S with σ∗

i E
∼= Ei (as elliptic curves). Since

morphisms of schemes form a stack in the Zariski topology ([Vis04], section 4.3), we obtain a map
ρ : E → S so that σ∗

i (E) is isomorphic to Ei and these isomorphisms are compatible with φij and
with ρi and σ∗

i (ρ), respectively. It is proper and smooth since these properties can be checked Zariski
locally.

For the section, consider the compositions Ui Ei
ei ∼= σ∗

i E → E. These coincide on intersections,
so define a map e : S → E so that eσi = ei. We need to check ρe = idS . Again, we can do this Zariski
locally, and there it is implied by the commutativity of the following diagram:

E Ei σ∗
i E E

Ui S.

ei

ρi

∼= τi

σ∗
i (ρ)

ρ

σi

Next, we need to check that the pullbacks of (E, e) to geometric fibers are elliptic curves again.
Note that since {Ui → S} is a Zariski covering, any map Spec(k̄) → S factors through some Ui, so
that the pullback of E to Spec(k̄) is isomorphic to the pullback of Ei to Spec(k̄), and also the induced
sections coming from e and ei coincide. Thus, the geometric fibers of ρ are elliptic curves since so are
the geometric fibers of ρi by assumption.

This complete the proof.

The main difficulty now is the fact that "gluing" of schemes given on an fpqc (even an étale)
covering does not yield a scheme again. In the étale case, we could in general obtain an algebraic
space in this way. So we need some care to see that in the case of elliptic curves (which goes back to
the case of polarized schemes), the gluing does work out. Note that this would not work for genus 1
curves without section.

Let (Pol) the category whose objects are pairs (f : X → Y,L) where f is a proper and flat
morphism of schemes and L is a relatively ample invertible sheaf on X. A morphism

(f ′ : X ′ → Y ′, L′)→ (f : X → Y,L)

is a triple (a, b, ε) where
a : Y ′ → Y b : X ′ → X

are morphisms of schemes such that the square

X ′ X

Y ′ Y

b

f ′ f

a
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is cartesian and ε : b∗L→ L′ is an isomorphism of invertible sheaves on X ′.
There is a functor

(Pol)→ (Schemes)

(f : X → Y,L) 7→ Y

which makes (Pol) into a fibered category over the category of schemes.

Proposition 2.2.10. (Pol) is a stack in the fpqc topology.

Proof. See [Ols16], Proposition 4.4.12.

This result will be helpful for the conclusion of the proof of Theorem 2.2.6.

Lemma 2.2.11. Whenever V → U is a flat surjective morphism of affine S-scheme, the functor

M1,1(U)→M1,1(V → U)

is an equivalence of categories.

Proof. We only need to check that it is essentially surjective. Let an elliptic curve ρ : E → V with
section e : V → E be given, together with descent data, i. e. an isomorphism β : pr∗2E → pr∗1E of
elliptic curves over V ×U V satisfying the appropriate cocycle condition. Observe that Proposition
2.2.5 implies that we have a morphism of fibered categories

M1,1 → (Pol)
(S′, (E′, ρ′, e′)) 7→ (ρ′ : E′ → S′,J ′−1)

where J ′−1 is the ideal sheaf corresponding to e′. This implies in particular that we have a 2-
commutative diagram of categories

M1,1(U) Pol(U)

M1,1(V → U) Pol(V → U).

Because of the Proposition 2.2.10, we conclude there is a scheme X and a flat proper morphism
of finite presentation q : X → U and an isomorphism σ : φ∗X → E of schemes over V , satisfying
certain compatibilities. Actually we also get a relatively very ample invertible sheaf L on X and an
isomorphism σ∗π∗L ∼= J−1 of OE-modules, where π denotes the projection φ∗X → X, but we will
not use this. In particular, this means that σ is an isomorphism of descent data, and more explicitly,
we have a commutative diagram

pr∗2φ
∗X pr∗2E

pr∗1φ
∗X pr∗1E.

pr∗2σ

γ β

pr∗1σ

(2.13)

The last piece of data we need to construct is a section for q. To do so, we will use that X is a
sheaf in the fpqc topology. Observe that we have a map V → X defined as

V E φ∗X X.e σ1 π

We have to show that precomposing this map with either projection pri : V ×U V → V yields the same
result. Since β is an isomorphism of elliptic curves, it satisfies β ◦ pr∗2(e) = pr∗1(e). Thus we have

π ◦ σ−1 ◦ e ◦ pr1 = π ◦ σ−1 ◦ pr1 ◦ pr∗1(e) (as in (2.11))

= π ◦ σ−1 ◦ pr1 ◦ β ◦ pr∗2(e) (definition of β)

= π ◦ pr1 ◦ pr∗1(σ)−1 ◦ β ◦ pr∗2(e) (definition of pr∗1(σ))

= π ◦ pr1 ◦ γ ◦ pr∗2(σ)−1 ◦ pr∗2(e) (commutativity of (2.13))
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= π ◦ σ−1 ◦ pr2 ◦ pr∗2(e) (definition of pr∗2(σ))

= π ◦ σ−1 ◦ e ◦ pr2 (as in (2.11)).

Thus we obtain a map j : U → X so that j ◦ φ = π ◦ σ−1 ◦ e. We still need to show that qj = idU .
Since U is a sheaf in the fpqc topology, we only need to check qjφ = φ which is straightforward. Next
we conclude by [Gro66], Corollary 17.7.3, that q : X → U is actually smooth since its pullback along
the faithfully flat and quasi-compact map φ is smooth.

We are left to show that for any algebraically closed field k and any morphism Spec(k)→ U , the
pullback (Xk, jk) of (X, j) is an elliptic curve over k. Recall that U = Spec(A) and V = Spec(B)
were assumed to be affine. Then we know that Spec(k)×U V ∼= Spec(B ⊗A k). Note that B ⊗A k is
not the 0-ring since the map A→ B was assumed to be faithfully flat, thus it has some maximal ideal
m. Let L be the algebraic closure of the quotient B ⊗A k/m; then we have the commutative diagram

Spec(L) V

Spec(k) U.

Let EL be the pullback of E along Spec(L)→ V . Note than the diagram

EL Spec(L)

Xk Spec(k)

ρL

g g̃

qk

is cartesian. It is easy to check that also the pullback of the section jk : Spec(k)→ Xk is the section
eL, and recall we assumed that (EL, eL) is an elliptic curve over L. Thus we conclude by Lemma ??
that (Xk, jk) is an elliptic curve over k.

This finishes the proof that the triple (X, q, j) constructed above is an elliptic curve over U whose
pullback is up to isomorphism given by the descent data we started with.

This concludes the proof that M1,1 is indeed a stack with respect to the fpqc topology.

2.3. Weierstrass equation for stack

The main result we prove in this section is that any elliptic curve is Zariski locally given by a Weier-
strass equation.

Lemma 2.3.1. Let R be an arbitrary ring, and let f1, . . . , fn be homogeneous polynomials in
R[T1, . . . , Tk] with n ≤ k − 1. Then

X = Proj(R[T1, . . . , Tk]/(f1, . . . , fn)) (2.14)

is smooth over Spec(R) of relative dimension k − 1 − n ⇐⇒ for any ring homomorphism into a field
α : R→ k, the scheme

Xk = Proj(k[T1, . . . , Tk]/(α(f1), . . . , α(fn)) (2.15)

is smooth over k of relative dimension k − 1− n.

Proof. =⇒ If X → Spec(R) is smooth of relative dimension k − 1− n, so is any pullback X ×Spec(R)

Spec(k)→ Spec(k).
⇐= For the converse, it is enough to show that X → Spec(R) is smooth of relative dimension

k − 1− n when restricted to each D+(Ti). Thus, we need to check that the map

R→ R[T1, . . . , T̄i, . . . , Tk]/(f1(Ti = 1), . . . , fn(Ti = 1))

is smooth of relative dimension k − 1 − n. We already know that the restriction to D+(Ti) ⊂ Xk is
smooth of the same relative dimension for any α : R→ k, so that

k → k[T1, . . . , T̄i, . . . , Tk]/(α(f1(Ti = 1)), . . . , α(fn(Ti = 1)))
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is smooth of the same dimension, and also standard smooth. This means that the matrix

(
∂α(fr(Ti = 1))

∂Ts
)1≤r≤n, 1≤s≤k, s ̸=i

has rank n. By Definition 6.14 of [GW10], this corresponds exactly to the smoothness of X →
Spec(R).

For the next lemma we use the same notation of section 2.1.

Corollary 2.3.2. Let R be any ring. Then the closed subscheme of P2
R cut out by the Weierstrass

equation
Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X

2Z + a4XZ2 + a6Z
3. (2.16)

is an elliptic curve over R if ∆ is invertible in R.
Moreover, if this equation cuts out a smooth scheme over Spec(R), then ∆ is invertible in R.

Proof. Denote with E the scheme Proj(R[X,Y, Z]/(Y 2Z+a1XY Z+a3Y Z2 = X3+a2X
2Z+a4XZ2+

a6Z
3). This comes with a natural map E → Spec(R). This map is proper since it is the composition

of a closed immersion E → P2
R and the map P2

R → Spec(R) (both proper for known facts). We use
the Lemma 2.3.1 to reduce to study the case R = k. Note that it is enough to consider algebraically
closed fields. Hence the result follows from Proposition 2.1.2.

We need the following technical lemma.

Lemma 2.3.3. Let f : X → Y be a morphism of proper S-schemes such that for every geometric
point Spec(k)→ S, the pullback fk : Xk → Yk is a closed immersion. Then f is a closed immersion.

Proof. First, by [Sta22] Tag [01W6] we have that f itself is proper. Now we exploit Corollary 18.12.6
of [Gro67] combined with Proposition in [Sta22] Tag [01S4]. Therefore, being f a closed immersion is
equivalent to the fact that for every y ∈ Y with residue field k(y), the pullback map

Xk(y) := X ×Y Spec(k(y))→ Spec(k(y))

is universally injective. Let s = h(y), where h : Y → S. The map Y → S induces a map of residue
fields k(s)→ k(y) and a commutative diagram

Spec(k(y)) Y

Spec(k(s)) S,

so that we also obtain a map Spec(k(y)) → Yk(s) := Y ×S Spec(k(s)) compatible with the above
morphisms. In particular, the map Spec(k(y)) → Y factors through Yk(s) → Y , and the squares
below are pullback squares:

Xk(y) Xk(s) X

Spec(k(y)) Yk(s) Y.

(2.17)

Moreover, observe that k(y) is indeed the residue field k(y′) of its image point y′ in Yk(s), since the
morphism Yk(s) → Y by construction has the property k(y) ⊂ k(y′). If we prove that Xk(s) → Yk(s) is
a closed immersion, then using Corollary 18.12.6 [Gro67] again, the left vertical arrow of the diagram

(Xk(s))k(y′) = Xk(y) Xk(s)

Spec(k(y′)) = Spec(k(y)) Yk(s)

is universally injective, which is exactly what we need to conclude.
Now it remains to prove that Xk(s) → Yk(s) is a closed immersion. We already know by assumption

that X ¯k(s) → Y ¯k(s) is a closed immersion. Since Spec( ¯k(s))→ Spec(k(s)) is fpqc, so is Y ¯k(s) → Yk(s),
and thus by fpqc descent (see [Vis04] Proposition 1.15) the map Xk(s) → Yk(s) is a closed immersion.
This complete the proof.
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Our next objective is to provide local Weierstrass equations for all elliptic curves.

Theorem 2.3.4. Zariski locally, any elliptic curve is given by a Weierstrass form.

Proof. By 2.2.1, it is enough to show that any elliptic curve (E, ρ : E → Spec(R), e) for a noetherian
ring R is Zariski locally cut out by a Weierstrass equation. Recall that we have shown in Proposition
2.2.5 that the ideal sheaf I of the closed immersion e : Spec(R)→ E is an invertible line bundle, and
also that the formation of L := I−1 is compatible with base change. By definition, we have an exact
sequence

0 I OE e∗OSpec(R) 0, (2.18)

which yields for any n ≥ 0 the short exact sequence

0 L⊗n L⊗n+1 e∗OSpec(R) ⊗ L⊗n+1 0. (2.19)

Next, we want to show that ρ∗(L⊗n) is a locally free module of rank n for n ≥ 1. We will use
again the variant of cohomology and base change of [Vis04], Proposition 4.37. To apply it, we need
to compute H1(Ek,L⊗n

k ), and it is enough to do so for algebraically closed field k̄ = k. Using Serre
duality and the fact that the dualizing sheaf of an elliptic curve over an algebraically closed field is
trivial, we conclude

H1(Ek,L⊗n
k ) ∼= H0(Ek,L⊗−n

k ).

We can identify Lk
∼= OEk

(eSpec(k)). We conclude that negative powers of Lk do not have non-
trivial global sections. Hence, we may apply [Vis04], Proposition 4.37 to conclude that ρ∗(L⊗n) is
a locally free module and its formation commutes with base change. To determine the rank, we use
again the pullback to an algebraically closed field k. Riemann-Roch’s theorem immediately implies
that the rank is n and so is the rank of ρ∗(L⊗n).

Next, we want to show that the quotient of the pushforward map ρ∗(L⊗n) → ρ∗(L⊗(n+1)) is a
locally free module of rank 1. We can choose an affine covering of Spec(R) trivializing both of these
locally free sheaves. For any Spec(A) in this covering, the quotient corresponds (via global sections)
to an A-module M in the exact sequence of the form

0 An An+1 M 0 (2.20)

Given any A-algebra A′, we pull back to Spec(A′) and obtain an elliptic curve (E′, ρ′, e′). We know
that the inverse L′ of the ideal sheaf of e′ is exactly the pullback of L (and the same for all its
powers). Since the formation of ρ∗(L⊗n) commutes with base change, we conclude that the resulting
map An ⊗A A′ → An+1 ⊗A A′ is injective, so that Tor1A(M,A′) = 0. This is in particular true
for all square 0 extensions A′ = A ⊕ N , where we mean that given an A-module N , we give to
A ⊕ N a structure of A-algebra with multiplication (a1, n1) · (a2, n2) = (a1a2, a1n2 + a2n1). Since
Tor1A(M,A′) = Tor1A(M,A)⊕ Tor1A(M,N) we conclude Tor1A(M,N) = 0 for every A-module, i.e. M
is flat. Since R and thus A are noetherian, and M is flat and finitely generated, we can conclude that
M is locally free, and then it is necessarily of rank 1.

Following similar arguments, and by possibly restricting further, we may assume ρ∗(L⊗n) for n ∈
{1, 2, 3, 6} and also the quotients ρ∗(L⊗2)/ρ∗(L⊗1) and ρ∗(L⊗3)/ρ∗(L⊗2) to be trivial over Spec(A).
Moreover, we will use the product structure on ⊕n≥0L⊗n.

Fixing identifications, we may choose the basis 1 for

A ∼= Γ(Spec(A), ρ∗L) ∼= Γ(E ×Spec(R) Spec(A), pr2∗pr∗1L).

Using freeness of the quotients, we can also choose bases 1, x and 1, x, y for the cases n = 2 and n = 3
respectively. This defines the elements

1, x, x2, x3, y, xy, y2 ∈ Γ(Spec(A), ρ∗(L⊗6)) ∼= A6. (2.21)

Now we want to prove that there exist a1, . . . , a7 ∈ A such that

a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2 + a7x
3 = 0, (2.22)

with a6a7 ̸= 0. Equivalently, it suffices to prove the map A7 → Γ(Spec(A), ρ∗(L⊗6)) ∼= A6 is surjective.
Being surjective is a local property, and we also can verify this only pullbacking for maximal ideals
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of A, so the thesis follows from the Theorem 2.1.4, part (1). Moreover, the arrow EA := E ×Spec(R)

Spec(A) → P2
A using the map given by the sections x, y, 1, is a closed immersion, since for lemma

2.3.3 it suffices to check the pullback to each geometric point, and for these the thesis follows again
from the Theorem 2.1.4, part (1).

One can check now that the map defined by sections x, y, 1 factors through the closed subscheme
V+(F ) = Proj(A[X,Y, Z]/(F )) of P2

A, where F is the homogeneous variant of 2.22. Our goal now is
to show that the resulting map EA → V+(F ) is an isomorphism of schemes over Spec(A). To do so,
we need to show that the corresponding ideal sheaf J vanishes; recall it is defined as the kernel of

0 J OV+(F ) j∗OEA
0. (2.23)

Once again we exploit that, if we base-change the whole situation to an algebraically closed field k,
the pullback Jk of J to V+(Fk) vanishes. Indeed, if we pullback the exact sequence 2.23 along a
morphism P2

k → P2
A, the sequence remains exact since j∗OEA

is flat over Spec(A). Moreover we can
use cohomology and base change for affine maps to conclude that the pulled back exact sequence is
of the form

0 Jk OV+(Fk) (jk)∗OEk
0. (2.24)

Here again we use the Theorem 2.1.4 to say Jk = 0. So, if we restrict the original exact sequence 2.23
to standard opens in P2

A, we in each case get a corresponding sequence of A-module

0 J S N 0, (2.25)

where we in addition know that S is a finitely generated A-algebra, thus in particular a noetherian
ring. Moreover, after tensoring with k for any ring homomorphism A → k to an algebraically closed
field k, we have deduced J ⊗ k = 0. Then also J ⊗ k = 0 holds for any k field. Now given a ring
homomorphism S → k, we obtain by composition with the morphism as algebra A → S, a map
A→ k. In particular, the tensor product J ⊗S k is a quotient of J ⊗A k and thus 0 itself. This applies
in particular to k = Sp/pSp for all prime ideals p ⊂ S. Since S is noetherian, J is finitely generated
as S-module, so we can apply Nakayama’s Lemma to conclude J = 0. Notice that this isomorphism
is an isomorphism of elliptic curves, since it respects the sections. In fact, by construction the section
eA : Spec(A)→ EA

∼= V+(F ) factors through the section of V+(F ) given by ”[0, 1, 0]”. With the same
argument used before, it is an isomorphism since it can be verified on each fiber by Theorem 2.1.4
and after one can lift the argument using the noetherian hypothesis and Nakayama’s Lemma. This
concludes the proof.

An important consequence of this Theorem is the fact that M1,1 is a quotient stack. In fact, let
U be the scheme

U := Spec(Z[a1, a2, a3, a4, a6,
1

∆
]), (2.26)

Let G denote the group scheme with underlying scheme Spec(Z[u±, r, s, t]) with group law defined by

(u′, r′, s′, t′) · (u, r, s, t) = (uu′, u2r′ + r, us′ + s, u3t′ + u2r′s+ t). (2.27)

The identity is the element (1, 0, 0, 0). This group acts on U via

(u, r, s, t) · (a1, a2, a3, a4, a6) = (
a1 + 2s

u
,
a2 − sa1 + 3r − s2

u2
,

a3 + ra1 + 2t

u3
,
a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st

u4
,

a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1
u6

).

One can check that it is well defined since (u, r, s, t) ·∆ = u12∆ and it is indeed an action. Moreover,
given an elliptic curve of the form

Spec(O(U)[x, y]/(y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6)),
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the action on the coefficients induces an action on it, providing a new elliptic curve. In fact, if we
denote with (x′, y′) the new coordinates, one can easily observe that this action is exactly:

(X ′, Y ′) 7→

{
X = u2X ′ + r,

Y = u3Y ′ + sX ′ + t,
(2.28)

and these are exactly the isomorphisms between elliptic curves guaranteed by Theorem 2.1.4 part (2).

Theorem 2.3.5. The morphism U →M1,1 defined by the so called tautological elliptic curve E :=
Proj(Z[x, y, z]/(Y 2Z + a1XYX + a3Y Z2 = X3 + a2X

2Z + a4XZ2 + a6Z
3) is smooth and surjective.

Moreover, we have the stack isomorphismM1,1
∼= [U/G]. In particularM1,1 is an algebraic stack

with respect to the fpqc topology.

Proof. Observe that from Theorem 2.3.4 we have that each elliptic curve (E, ρ : E → S, e) is Zariski
locally given by a Weierstrass equation. Hence we have locally on an étale cover {Si → S} a morphism
fi : Si → U such that f∗

i E = Ei. On the intersections these morphisms glue through the groups GSij

and this give to U ×M1,1 S → S a structure of GS-bundle. Moreover, we observe that the map
U →M1,1 is G-invariant. From Theorem 1.7.8 it follows thatM1,1

∼= [U/G].

Notice that there are several presentation of the stack M1,1 and its pull-backs. One may obtain
these generalizing the Weierstrass equations like in the classical setting, exploiting Theorem 2.3.4 and
after applying again Theorem 1.7.8 as in the previous proof. We see now some examples.

Example 2.3.6. There is the universal Legendre family E2 over the ring R2 := Z[ 12 , λ][
1

λ(1−λ) ],
defined as

E2 := Proj(R2[x, y, z]/(y
2z − x(x− z)(x− λz)),

with the chosen Ω2 := −dx
2y and two specified 2-torsion points P2, Q2 such that x(P2) = 0 and

x(Q2) = 1.
The quadruple (E2,Ω2, P2, Q2) is universal, in the sense that given any quadruple (E/S, ω, P ′

2, Q
′
2),

where S is a Z[1/2]-scheme, there exists a unique cartesian diagram

E E2

S Spec(R2)

such that the pull-back of Ω2 is ω and the pull-backs of the effective Cartier divisors P2 and Q2 are
P ′
2 and Q′

2 respectively.

Example 2.3.7. There is the universal family E3 of naive level 3 structure over the ring R3 :=
Z[ 13 , b, c][

1
∆(b,c) ]/(c

3 + 3bc2 + 3b2c), defined as

E3 := Proj(R3[x, y, z]/(y
2z + (3c− 1)xyz − (3c2 + 3bc+ b)yz2 − x3),

with ∆(b, c) which represents the discriminant in the coordinates b and c. Moreover, this is equipped
with the data of the chosen Ω3 := −dx

2y and two specified 3-torsion points P3 = (0, 0) and Q3 = (c, b+c).
The quadruple (E3,Ω3, P3, Q3) is universal, in the sense that given any quadruple (E/S, ω, P ′

3, Q
′
3),

where S is a Z[1/3]-scheme, there exists a unique cartesian diagram

E E3

S Spec(R3)

such that the pull-back of Ω3 is ω and the pull-backs of the effective Cartier divisors P3 and Q3 are
P ′
3 and Q′

3 respectively.
In Chapter 3, in the proof of Proposition 3.6.1 we will use a variation of this given by the Hesse

presentation.
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2. The Stack of the Elliptic Curves The Automorphism Group

Since these two examples are standard facts, for the sake of brevity, we omit the details and invite
the reader to consult [KM85], Example 2.2.8 and 2.2.10 respectively.

Consider the morphisms Spec(R2) → M1,1 and Spec(R3) → M1,1 defined by the respective
universal families. They induce

Spec(R2)→M1,1 × Spec(Z[1/2])

and
Spec(R3)→M1,1 × Spec(Z[1/3])

which are both surjective. Moreover, they are both étale (for a complete proof see [KM85], Theorem
2.3.1), and so the map

Spec(R2)
⊔

Spec(R3)→M1,1

is an étale atlas. We have proved

Proposition 2.3.8. The stackM1,1 is Deligne-Mumford.

We conclude the section with a variation of the discussion done before of Theorem 2.3.5.
Let W be the scheme

W := Spec(Z[a1, a2, a3, a4, a6])− V (∆, c4).

The difference with the scheme U defined in 2.26, is that ∆ is allowed to be zero, but in that case
c4 ̸= 0. Let G denote the group scheme defined above (2.27), with the action extended in the natural
way to W .

Definition 2.3.9. We denote with M̄1,1 the quotient stack [W/G]. It is the standard compactification
of the stack M1,1. We denote with M̄1,1,S the pull back S ×Spec(Z) M̄1,1 for a scheme S.

Observe that in light of Proposition 2.1.2, what we have just defined is the same as the stack
M1,1,S to which the nodal curves have been added.

In fact, one could proceed in a different way to define the stack M̄1,1. First of all, one define the
generalized elliptic curves over a scheme S as the datum of a proper flat finitely presented morphisms
E → S each of whose geometric fibers is either a smooth connected curve of genus 1 or a nodal curve,
together with a smooth section e : S → E. After having defined morphisms of generalized elliptic
curves, in a manner analogous to the smooth case, we can consider M̄1,1 as the category fibered over
the category of schemes, such that M̄1,1(T ) is the groupoid of generalized elliptic curves, for every
scheme T . Then, one can prove that this is a stack, following the same argumentation forM1,1, with
slight changes. Finally, after having proved a result similar to Theorem 2.3.4 which includes nodal
curves too, one can prove that the stack obtained is isomorphic to [W/G].

By the way, to make the exposition brief and not to be redundant, we have followed a direct
approach simply saying that M̄1,1 is [W/G]. For more details about this different approach see for
[DR73] on Chapter 4.

2.4. The Automorphism Group

As we have already explained, it is essential to know the structure of the automorphisms of the object
of a moduli problem.

In the case of elliptic curves, starting from a Weierstrass equation, it is easy to compute the
automorphism group.

Here we present the proof of the structure of the automorphism group, entirely taken by [Sil09],
Theorem 10.1, since we need some of the details of this proof in the next chapter.

Theorem 2.4.1. Let E/k be an elliptic curve over an algebraically closed field. Then its automor-
phism group Aut(E) is given by the following table:

43



The Automorphism Group 2. The Stack of the Elliptic Curves

#Aut(E) j(E) char(k)

2 j(E) ̸= 0, 1728 any
4 j(E) = 1728 char(k) ̸= 23
6 j(E) = 0 char(k) ̸= 23
12 j(E) = 0 = 1728 char(k) = 3
24 j(E) = 0 = 1728 char(k) = 2

Proof. (Char(k) ̸= 2, 3). We know that E is given by an equation

E : y2 = x3 +Ax+B,

and every automorphism of E has the form

x = u2x′

y = u3y′,

for such a u ∈ k∗. Such a substitution gives us

y′2 = x′3 +
A

u4
x′ +

B

u6
.

Therefore, it is an isomorphism if and only if

A

u4
= A,

B

u6
= B.

If AB ̸= 0, i. e. if j(E) ̸= 0, 1728, then the only possibilities are u = ±1. Similarly, if B = 0, then
j(E) = 1728 and u4 = 1, and if A = 0, then j(E) = 0 and u6 = 1. Hence Aut(E) is cyclic of order
2, 4 or 6, depending on whether AB ̸= 0, B = 0, A = 0.

(Char(k) = 3 and j(E) ̸= 0). In this case E has a Weierstrass equation of the form

y2 = x3 + a2x
2 + a6.

The only substitutions preserving this type of equation are

x = u2x′

y = u3y′.

An easy computation shows that it represents an automorphism if and only if a′2u2 = a2, i.e. if and
only if u2 = 1, so Aut(E) ∼= Z/2Z.

(Char(k) = 3 and j(E) = 0). The curve has a Weierstrass equation of the form

y2 = x3 + a4x+ a6.

The substitutions preserving this form look like

x = u2x′ + r

y = u3y′.

Note that we have that a4, a
′
4 ̸= 0. An automorphism is obtained by choosing u and r to satisfy

a′4 = a4 and a′6 = a6. However

a4u
4 = a′4,

r3 + a4r + a6 − u6a′6 = 0,

hence u and r satisfy

u4 = 1

r3 + a4r + (1− u2)a6 = 0.
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Since a4 ̸= 0 there are exactly 12 such pairs (u, r) making up Aut(E). In particular, by the clas-
sification of groups of order 12, it is easy to see that the automorphism group is isomorphic to
Z/4Z ⋉ Z/3Z ∼= Z/2Z ⋉ S3.

(Char(k) = 2 and j(E) ̸= 0). E is given by equation of the form

y2 + xy = x3 + a2x
2 + a6,

with a6 ̸= 0 since j(E) ̸= 0. The substitutions preserving this form look like

x = x′

y = y′ + sx.

So automorphisms come from taking s to be a root of the equation

s2 + s = 0,

hence s ∈ {0, 1}.
(Char(k) = 2 and j(E) = 0). Here E is given by equations of the form

y2 + a3y = x3 + a4x+ a6,

and allowable substitutions look like

x = u2x′ + s2

y = u3y′ + su2x′ + t.

By assumption, a3 ̸= 0. To make an automorphism we must choose u, s, t to satisfy the equations

u3 = 1,

s4 + a3s+ (1− u)a4 = 0,

t2 + a3t+ s6 + a4s
2 = 0.

Since a3 ̸= 0, we see that Aut(E) has order 24.

The reason why an entire chapter has been devoted to the group of automorphisms of elliptic curves
is that the knowledge of the automorphisms of the points of the stack is fundamental to deduce some
of its geometric properties. Actually, in chapter 3, the automorphisms will be crucial to determine
the structure of the Picard group ofM1,1,S .

Finally, observe that it is in fact the presence of the automorphism of the curves to obstruct the
construction of a fine moduli space (i. e. the stackM1,1 is not representable).

2.5. The coarse moduli space of M1,1

Define the j-invariant for an elliptic curve over S defined by a Weierstrass equation at the same way
of the classical case:

j(E,e) = (b22 − 24b4)
3/∆ ∈ Γ(S,OS). (2.29)

Proposition 2.5.1. Let S be a scheme, and f1, f2 : S → U two morphisms defining two elliptic
curves (E, e) and (E′, e′) over S. Let j (respectively j′) be the j-invariant defined using elements
f ♯
1(a) (respectively f ♯

2(a)). If (E, e) and (E′, e′) are isomorphic elliptic curves, then j = j′.

Proof. When S is a field, we reduce to the case in which it is algebraically closed and this is exactly
the Theorem 2.1.2, part (2). When S is a domain is simple, because the equality j = j′ can be verified
at the generic point (i. e. we are tensoring for Q(Γ(S,OS)) the fraction field). Similarly, with the
same approach we prove the thesis when S is reduced, since we can verify the equality at each generic
point.
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Finally, observe how the general case can be reduced to the case of S reduced as follows. Consider
the fiber product

V := U ×M1,1
U

Let E → U be the tautological elliptic curve, and let φ : pr∗1E → pr∗2E over V . If there is an isomorphism
λ : (E, e) → (E′, e′), then the element ((E, e), (E′, e′), λ) ∈ V . Hence giving such an isomorphism is
equivalent to give a morphism γ : S → V such that pr1 ◦ γ = f1 and pr2 ◦ γ = f2. It therefore suffices
to verify that the j-invariant of pr∗1E and pr∗2E over V are equal. Now since U is a reduced scheme,
and pr1, pr2 : V → U are smooth, the scheme V is also reduced, and so the general case follows from
the reduced one.

Now, given an elliptic curve (E, e)/S defined over a scheme S, we know that Zariski locally we
have {(Ei, ei)/Si}i defined by a Weierstrass equation (see Theorem 2.3.4). So we obtain {j(Ei,ei) ∈
Γ(Si,OSi

)}i and they lift to a global section j(E,e) ∈ Γ(S,OS) since by Proposition 2.5.1 they agree
on the overlaps (regardless of the choice of Weierstrass equation). Hence we have canonically defined
j-invariant, and we can therefore define a map

j :M1,1 → A1. (2.30)

We want to apply Theorem 1.8.2 to assert that there exists a coarse moduli space π :M1,1 →M1,1.
We need the next proposition.

Proposition 2.5.2. M1,1 is an algebraically stack locally of finite presentation over Z with finite
digonal.

Proof. Being locally of finite presentation is obvious. In fact by Proposition 2.3.5 we know that
U →M1,1 is smooth and surjective and by definition we only need to check that U is locally of finite
presentation and this is trivial.

Next let us verify that the digonal of M1,1 is finite. Equivalently, if (E, e) and (E′, e′) are two
elliptic curves over a scheme S, then the quasi-projective scheme I = Isom((E, e), (E′, e′)) is finite
over S. The geometric fibers of this scheme are finite since an elliptic curve over an algebraically
closed field has only finitely many automorphisms. By [Vak17], Theorem 29.6.2, it suffices to show
that I is proper over S, which we do by verifying the valutative criterion for properness. To do so,
assume that S is the spectrum of a discrete valuation ring with generic point ν ∈ S and closed point
s ∈ S. Let

gν : (Eν , eν)→ (E′
ν , e

′
ν)

be an isomorphism over the generic point. We must show that gν extends to an isomorphism over all
of S. The fact that it extends, trivially follows from the "minimal model property" of elliptic curves,
see [Sil09] Chapter 7.1.

Corollary 2.5.3. The stackM1,1 is separated.

Proof. It is obvious since the diagonal is finite, hence proper.

In particular, by Theorem 1.8.2, it follows that there exists the coarse moduli space for M1,1.
Since A1 is a scheme, the universal property of the coarse moduli space gives a unique factorization

M1,1 M1, 1 A1.π

j

j̄ (2.31)

Theorem 2.5.4. The map j̄ (2.31) is an isomorphism.

Proof. For this, note that the morphism j : M1,1 → A1 is proper. Again it suffices to verify the
valutative criterion for properness. This amounts to showing that if V is a discrete valuation ring,
and (E, e)/K is an elliptic curve over the field of fractions K of V , such that the j-invariant j(E,e) is
an element of V , then after possibly replacing V by a finite extension, there exists an elliptic curve
over V whose generic fiber is (E, e). This follows from [Sil09], Chapter 7, Theorem 5.5.

It follows that the map j̄ is also proper. Since it is quasi-finite it follows from [Vak17], Theorem
29.6.2, that the morphism j̄ is also finite. Moreover, for every geometric point t : Spec(k) → A1 the
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underlying set of M1,1×A1 Spec(k) is a single point since elliptic curves over closed fields are classified
by their j-invariant. This implies that j̄ is birational (take t to be a geometric point lying over the
generic point of A1). Since a birational finite morphism between integral schemes with the target
normal is an isomorphism, we conclude that j̄ is an isomorphism.

Observation 2.5.5. Let k be a field. It is easy to prove with an analogous argument that the
statement of the Theorem is also valid for M1,1,k. Instead, it is not possible to reuse the previous
method to prove the theorem for general S. There is a proof of the previous Theorem in the case S is
an affine noetherian scheme, see [FO10] Theorem 1.3. In the proof the authors bypass the request the
scheme S being normal (that we need to conclude the proof) with another variant of the corollaries
given by the Zariski Main Theorem.

However, in the rest of the section we use a different argument to generalize the Theorem in a
wider context.

We want to consider the j-map obtained after the pull back along S → Spec(Z), i.e. j :M1,1,S →
A1

S . It would be a pleasant surprise if this was still the coarse moduli space for M1,1,S . This claim
is actually correct, even if a priori this is not immediate, since the formation of coarse moduli spaces
commutes (in general) only with flat base change, unless the stack is tame. But M1,1 is note tame,
as we can see if take a geometric point Spec(k)→ Spec(Z) with char(k) equal to 2 or 3.

We want now to prove this result. First of all, observe that the j-invariant is equal to j = c34/∆,
hence the j-map can be extended to

j : M̄1,1 → P1.

simply sending the nodal curves to∞. With abuse of notation we named this map at the same manner
of the map in 2.30. Notice that in this case too is possible to pull back the map along S → Spec(Z).

We will prove the following stronger result

Theorem 2.5.6. The morphism
j : M̄1,1,S → P1

S . (2.32)

given by the j-invariant identifies P1
S with the coarse moduli space of M̄1,1,S .

The proof will be trivial at the end of this section after having proved Lemma 2.5.8. Before delving
into this we present an immediate and fundamental Corollary.

Corollary 2.5.7. The morphism
j :M1,1,S → A1

S . (2.33)

given by the j-invariant identifies A1
S with the coarse moduli space of M1,1,S .

Proof. Since A1
S → P1

S is flat and the square

M1,1,S M̄1,1,S

A1
S P1

S

j j

is cartesian, the thesis trivially follow from Theorem 2.5.6

Theorem 2.5.6 is immediate by virtue of the following lemma.

Lemma 2.5.8. Let X be a Deligne-Mumford stack that is separated, flat and locally of finite type
over Z, and let

f : X → X

be its coarse moduli space map. If fFp : XFp → XFp is the coarse moduli space map of XFp
for every

prime p, then fS : XS → XS is the coarse moduli space map of XS for every scheme S.

Proof. The formation of the coarse moduli space f : X → X commutes with flat base change in X
and we may work fppf locally on XS when checking that fS : XS → XS is the coarse moduli space of
XS . In light of Theorem 1.8.4, we may therefore assume that S = Spec(R) and that X = Spec(A)
and X = [Spec(B)/G] for some finite A-algebra B equipped with an action of a finite group G. In
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this situation, we have A = BG, the coarse moduli space of XS is Spec((B⊗ZR)G). We want to prove
that the map

jR : BG ⊗Z R→ (B ⊗Z R)G

is an isomorphism, exploiting the fact that it is an isomorphism whenever R = Fp for any p (the
reader can see the analogies with Corollary A.0.12 in the Appendix).

Since by hypothesis X is Z-flat, it follows that B and BG are torsion-free. Therefore, we have the
inclusion BG ⊗Z R → B ⊗Z R, and hence also jR, is injective for every Z-module R. It remains to
prove that jR is also surjective.

By a passage to a filtered direct limit, we may assume that the Z-module R is finitely generated.
The case R = Zn is obvious, so we may assume that R = Z/(n) for some n ∈ N≥1. We can decompose
the problem through the short exact sequence

0 Z/(n1) Z/(n) Z/(n2) 0.

Thanks to it, we obtain the commutative diagram

0 BG ⊗Z Z/(n1) BG ⊗Z Z/(n) BG ⊗Z Z/(n2) 0

0 (B ⊗Z Z/(n1))
G (B ⊗Z Z/(n))G (B ⊗Z Z/(n2))

G.

jZ/(n1) jZ/(n) jZ/(n2)

Using this, since we know the thesis in the case of Z/(p) with p prime, we conclude by induction.

Thanks to this last lemma, the proof of Theorem 2.5.6 becomes trivial, since M1,1 satisfies the
hypothesis of the lemma (as we emphasized in the Observation 2.5.5).
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CHAPTER 3
The Picard Group of the Stack M1,1,S

In this chapter we compute the Picard group of the moduli stack of elliptic curves. In order to state
the main theorem of this thesis, we quickly re-explain the setting in which we work. However, we will
adopt the same notation of Chapter 2 ([2.1]), so all the details can be found there.

As in the previous chapters, let M1,1 denote the moduli stack (over Z) classifying elliptic curves,
and for a scheme S let M1,1,S denote the fiber product S ×Spec(Z)M1,1.

Recall that onM1,1 there is the Hodge Bundle λ. For any morphism t : T →M1,1 corresponding
to an elliptic curve f : E → T the pullback t∗λ is the line bundle f∗Ω

1
E/T .

Note that if Λ is a ring, t : Spec(Λ)→M1,1 is a morphism corresponding to an elliptic curve E/Λ,
then after replacing Λ by a Zariski cover as in Theorem 2.3.4, the family E can be described by an
equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

With these chosen coordinates a basis for t∗λ is given by the invariant differential

π =
dx

2y + a1x+ a3
.

Any two choices of coordinates differ by a transformation

x′ = u2x+ r,

y′ = u3y + sx+ t.
(3.1)

where u ∈ Λ∗ and r, s, t ∈ Λ. One can easily compute that the invariant differential π′ obtained
from the coordinates (x′, y′) is equal to u−1π. Instead the discriminant ∆′ in the coordinates (x′, y′) is
equal to u12∆. In particular the element ∆π⊗12 ∈ t∗λ⊗12 is independent of the choice of coordinates,
and therefore defines a trivialization of λ⊗12 over M1,1. In particular it makes sense to consider the
powers of λ⊗i only modulo 12.

Let p :M1,1,S → A1
S the map defined by the j-invariant.

We will prove the following.

Theorem 3.0.1. Let S be a connected scheme. Then the map

Z/12Z× Pic(A1
S) −→ Pic(M1,1,S)

(i,L) 7→ λ⊗i ⊗ p∗L
(3.2)

is an isomorphism if either of the following hold:

(i) S is a Z[1/2]-scheme.

(ii) S is reduced.

Remark 3.0.2. As we observe in 3.6.3, the theorem fails for nonreduced schemes in characteristic 2.

Remark 3.0.3. If the base scheme S is not connected, the Picard group is simply
∏

i∈I Pic(M1,1,Si),
where the Si’s are the connected components of S.
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3.1. When 6 is invertible on S

Though the case when 6 is invertible follows from the more technical work in subsequent sections, we
include here a proof in the case of a Z[1/6]-scheme since it is much easier than the more general cases.

Let Proj(Z[x, y, z][1/6]/(y2z = x3 +xz2))⊗Spec(Z) S → S be the elliptic curve with automorphism
group µ4 (∆ = −64, j = 1728). Let s̃4 : S →M1,1,S be the section corresponding through the Yoneda
Lemma to that elliptic curve. This section defines closed immersion s4 : Bµ4,S ↪→M1,1,S .

Similarly, let Proj(Z[x, y, z][1/6]/(y2z + yz2 = x3)) ⊗Spec(Z) S → S be the elliptic curve with
automorphism group µ6 (∆ = −27, j = 0) and s̃6 : S → M1,1,S be the corresponding section.
Likewise, it defines closed immersion s6 : Bµ6,S ↪→ M1,1,S . For any line bundle L on M1,1,S the
pullback s∗4L (respectively s∗6L) corresponds to a line bundle M4 (respectively M6) on S with action
of the group µ4 (respectively µ6). We thus get maps

ρ4 : µ4 → Aut(M4) ≃ Gm, ρ6 : µ6 → Aut(M6) ≃ Gm, (3.3)

defining characters χ4 ∈ Z/4Z and χ6 ∈ Z/6Z. Observe that here we are using the hypothesis that S
is connected to obtain the isomorphism Aut(M4) ≃ Aut(M4) ≃ Gm.

Lemma 3.1.1. The pair (χ4 , χ6) lies in Z/12Z ⊂ Z/4Z× Z/6Z.

Proof. The construction of the pair (χ4 , χ6) commutes with arbitrary base change on S so it suffices
to consider the case when S is the spectrum of an algebraically closed field S = Spec(k). We have to
show that ρ4|µ2 = ρ6|µ2 .

Write k[[t]] for the completion of the local ring of A1 at j = 1728 and let k[[z]] be the completion
of the local ring of M1,1,S at the point corresponding to the curve y2 = x3 + x. To see how the map
k[[t]] → k[[z]] works, we can for example take the Legendre family Spec(k[λ][1/(λ)(λ − 1)]) which
provides an étale cover ofM1,1,k. Therefore, taking the localization of this family at the right point,
we actually obtain k[[z]]. The map is

k[t]→ k[λ][1/(λ)(λ− 1)]

t→ 28
(t2 − t+ 1)3

t2(t− 1)2

and this map is 6 : 1 except that in j = 1728 and j = 0 in which it is respectively 3 : 1 and 2 : 1.
These details about the Legendre family are standard and so they are omitted. For a reference see
[Sil09], Chapter 3.1 in the section about the Legendre form. Putting all together we deduce that, after
a suitable translation, the map between local rings k[[t]]→ k[[z]] sends t to z2.

Now we want to understand how the group µ4 acts on k[[z]]. The claim is that ζ4 ⋆ z = ζ24z = −z.
For proving this, we use a different presentation.

We have already seen that when S is a Z[1/6]-scheme, every elliptic curve is locally given by a
Weierstrass equation of the form y2 = x3+Ax+B, henceM1,1 can be presented as the stack theoretic
quotient [(Spec(k[x, y][1/∆])/Gm] where Gm acts via u(a, b) = (u4a, u6b). We are interested in the
point w̄ := (A,B) = (1, 0). We want to find a slice for w̄, that is a couple ((W,w), φ) where (W,w) is
a pointed affine scheme such that the automorphism group Γw̄ (of w̄ in M1,1,k) acts on W fixing w
and where φ is an étale map φ : [W/Γw̄] →M1,1,k = [(Spec(k[x, y][1/∆])/Gm] such that φ(w) = w̄.
In this way we can compute the action of Γw̄ on W .

We can consider the family y2 = x3 + x + z (so A = 1 and B = z left free to vary). In other
words, we have the morphism [A1/Gm] → [(Spec(k[x, y][1/∆])/Gm], and it is indeed a slice. Note
that the morphism is well defined: a computation, see [Sil09] Remark 4.1.3 for the details, shows that
∆ = −16(4A3 + 27B2) and therefore A = 1 =⇒ ∆ ̸= 0.

The restriction of the action of Gm to this family is simply u ⋆ z = u6z. In particular the action
of ζ4 is ζ4 ⋆ z = ζ24z = −z, and so localizing at z we have proved the claim.

Furthermore, we can write L|k[[z]] = k[[z]] · e for some basis e, such that ρ4 acts by ζ4 · e = ζχ4

4 e.
From this we see that ρ4|µ2

is equal to the character defined by the action of µ2 on the fiber of L at
the generic point ofM1,1,S . Similarly, ρ6|µ2 is equal to the action on the generic fiber.
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We therefore obtain a map

Pic(M1,1,S)→ Z/12Z
L 7→ (χ4 , χ6),

(3.4)

and it follows from the construction that this map is a homomorphism. Let K denote the kernel.
We prove now a technical lemma that we will need later.

Lemma 3.1.2. Let X be a tame Deligne-Mumford stack with coarse moduli space π : X → X. Let
L be an invertible sheaf on X such that for every geometric point x̃→ X the action of the stabilizer
group Gx̃ on Lx̃ is trivial. Then π∗L is an invertible sheaf on X and π∗π∗L → L is an isomorphism.

Proof. It suffices to prove the lemma after passing to the strict henselization of X at the geometric
point x̃. Let A = OX,x̄ and B = OX ,x̃. Then, as explained in Theorem 1.8.4, if Γ denotes the stabilizer
group of x̃ then there is a natural action of Γ on B such that X = [Spec(B)/Γ]. Let M be the free
B-module with Γ-action of rank 1 defining L. M is free because B is a local ring. By hypothesis,
since X is tame, the group Γ is linearly reductive. In particular, it follows that the representation
category of Γ is semisimple. Moreover, by our assumptions, Γ acts in the trivial way on M ⊗ k(x̃),
and therefore it is generated by an invariant element and choosing a lifting to an invariant element of
M we see that we can write M = B · e where Γ acts trivially on e. Then, by definition of pushforward
of a sheaf over a stack into the coarse moduli space, π∗L is just A · e and the lemma is immediate.

Corollary 3.1.3. The homomorphism π∗ : Pic(A1
S)→ K is an isomorphism.

Proof. First of all, observe that if W ∈ Pic(A1
S) then π∗(W) ∈ K. This is obvious because by

definition the pullback of a sheaf on A1
S to Bµi is a sheaf on S which is invariant if pulled back

through pr2 or ρ (we mean the action of G on U) into µi × S.
We show that if L is a line bundle with (χ4 , χ6) = (0, 0), i.e. L ∈ K, then π∗L is an invertible

sheaf on A1
S and π∗π∗L → L is an isomorphism. Observe that if S is a Z[1/6]-scheme, then the

automorphism groups of the geometric points are µ6, µ4 or µ2, and this groups are linearly reductive
since they are actually tame groups; so for Theorem A.0.11 we know thatM1,1,S is a tame stack. By
Lemma 3.1.2 it suffice to show that for any geometric point x̃ → M1,1,S the action of the stabilizer
group x̃ on L(x̃) is trivial. For this we may assume that S is the spectrum of an algebraically closed
field. By our assumptions the actions ρ4 and ρ6 are trivial. By the argument used in the proof of
3.1.1 this implies that the action of the generic stabilizer is also trivial, and so we have the thesis.

What we need now to conclude is to prove the following lemma.

Lemma 3.1.4. The image of λ (The Hodge Bundle) in Z/12Z is a generator. In particular 3.4 is
surjective.

Proof. It suffices to consider the case when S is the spectrum of a field in which case the above shows
that Pic(M1,1,S) injects into Z/12Z. We can in fact compute directly the image of λ in Z/4Z×Z/6Z.

The image in Z/4Z corresponds to the representation of µ4 given by the action on the invariant
differential dx

2y of the curve y2 = x3 + x. An element ζ4 ∈ µ4 acts by (x, y) 7→ (ζ24x, ζ4y) and therefore
the action on dx

2y is equal to multiplication by ζ4. Therefore the image of λ in Z/4Z is equal to 1.
Similarly, the image of λ in Z/6Z corresponds to the character given by the invariant differential

dx
2y+1 of the curve y2 + y = x3. Write µ6 = µ2 × µ3. Then (ζ2, 1) acts by (x, y) 7→ (x,−y − 1) and
(1, ζ3) acts by (x, y) 7→ (ζ3x, y). Therefore (ζ2, 1) acts on the invariant differential by multiplication
by −1 and (1, ζ3) by multiplication by ζ3. It follows that λ maps to 1 ∈ Z/6Z which implies that λ is
a generator in Z/12Z.

Corollary 3.1.5. The map λ × π∗ : (Z/12Z) × Pic(A1
S) → Pic(M1,1,S) is an isomorphism if S is a

Z[ 16 ]-scheme.
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The case of a normal affine scheme S 3. The Picard Group of the Stack M1,1,S

3.2. The case of a normal affine scheme S

In all this section we only consider the base scheme S to be affine and normal. So, Write S = Spec(Λ)
with Λ a normal affine ring. For clarity of exposition we repeat the notation fixed in the Theorem
2.3.5. Let U be the scheme

U := Spec(Λ[a1, a2, a3, a4, a6,
1

∆
]),

Let G denote the group scheme with underlying scheme Spec(Λ[u±, r, s, t]) with group law defined by

(u′, r′, s′, t′) · (u, r, s, t) = (uu′, u2r′ + r, us′ + s, u3t′ + u2r′s+ t).

Then M1,1,S is isomorphic to the stack theoretic quotient [U/G] (see Theorem 2.3.5).

Lemma 3.2.1 (Homotopic invariance for Pic). Let S = Spec(Λ) be a normal noetherian affine ring.
Then

Pic(S) ∼= Pic(An
S).

Proof. It suffices to prove the case with n = 1 and after the thesis is immediate by induction.
Consider the diagram

Pic(S) Pic(A1
S)

Cl(S) Cl(A1
S),

where Cl represents the class group, i.e. the group Div modulo linear equivalence. First of all, observe
that the map between class groups is an isomorphism. This follows from the fact there are two types
of height one prime ideals in A1

S : (x) and the height one prime ideal p of Spec(Λ). But (x) is principal,
so equal to zero in Cl(A1

S). From the normality we also know that the vertical arrows are injective,
and so it follows that the map between Picard groups is injective too.

Now we want to say that it is surjective. Notice that it is well defined the map CaDiv(S) →
CaDiv(A1

S) because the map is faithfully flat (see [Gro67] Proposition 21.4.5). Moreover, we can
apply [Gro67] Corollary 21.4.11 at page 360 for concluding this map is surjective.

We need now a technical lemma. We present it without a proof to avoid interrupting the flow of
the discussion, and we prove it without the details in the appendix.

Theorem 3.2.2. Let Λ be a normal domain, then it is the filtered colimit of a system consisting of
finite type and normal subrings.

Proof. For a proof, see the Appendix B.

Lemma 3.2.3. Let ∆ ∈ Z[t1, . . . , tn] be a polynomial satisfying

(i) The greatest common divisor of the coefficients of its non constant monomials is 1.

(ii) For any field k the image of ∆ in k[t1, . . . , tn] is irreducible.

Then for any normal ring Λ, the pullback homomorphism

Pic(Λ)→ Pic(Λ[t1, . . . , tn,
1

∆
]) (3.5)

is an isomorphism.

Proof. First of all, by 3.2.2 we can approximate Λ with normal noetherian domains. For filtered
colimits

Spec(Λ) = lim←−Spec(Λi)

we have that

Pic(Spec(Λ)) = Pic(Spec(lim−→Λi)) = Pic(lim←−Spec(Λi)) = lim−→Pic(Spec(Λi)).
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3. The Picard Group of the Stack M1,1,S The case of a normal affine scheme S

The analogous chain of equalities holds true for Λ[t1, . . . , tn,
1
∆ ] and so it is sufficient to deal with the

spectra of normal noetherian domains.
Hence suppose that Λ is noetherian. The assumption (i) implies that the map Spec(Z[t1, . . . , tn][ 1∆ ])→

Spec(Z) is surjective (for example because the ideal (p) continues to be prime in Z[t1, . . . , tn][ 1∆ ] since
p ∤ ∆). In particular this map is faithfully flat. It follows that the map

Spec(Λ[t1, . . . , tn][
1

∆
])→ Spec(Λ)

is also faithfully flat.
By the preceding observation the divisor V (∆) ⊂ Spec(Λ[t1, . . . , tn]) is irreducible. In fact if it

were factored as the product of two non-invertible polynomial than it would not be irreducible in
k̄[t1, . . . , tn] with Λ ⊂ k̄, which contradicts (ii).

It follows that there is an exact sequence of Weil divisor class group

Z[V (Λ)]→ Cl(Λ[t1, . . . , tn])→ Cl(Λ[t1, . . . , tn][
1

∆
])→ 0, (3.6)

where the first arrow is the zero map. We conclude that

Cl(Λ) ∼= Cl(Λ[t1, . . . , tn]) ∼= Cl(Λ[t1, . . . , tn][
1

∆
]). (3.7)

The normality of Λ implies that the natural maps from the Picard groups to the Weil divisor class
groups are injective. Thus it suffices to show that if D ∈ Cl(Λ) is a Weil divisor whose image in
Cl(Λ[t1, . . . , tn][

1
∆ ]) is in the image of Pic(Λ[t1, . . . , tn][

1
∆ ]), then D is obtained from a line bundle

on Spec(Λ). This follows from the observation that Λ → Λ[t1, . . . , tn][
1
∆ ] is faithfully flat, from the

isomorphism between Pic(Λ) and Pic(Λ[t1, . . . , tn]) and from Theorem 6 - chapter 4 in [isc].

We come back now to our main setting.

Proposition 3.2.4. The pullback map

Pic(S)→ Pic(U) (3.8)

is an isomorphism.

Proof. We apply the previous lemma to ∆ ∈ Z[a1, . . . , a6]. Then (i) and (ii) are immediate.

The isomorphism M1,1,S
∼= [U/G] defines a morphism σ :M1,1,S → BG, in the obvious way.

For a character χ : G → Gm defining a line bundle on BG (according to Theorem 1.10.1), let Lχ

be the line bundle on M1,1,S obtained by pulling back along σ.

Lemma 3.2.5. Let L be a line bundle onM1,1,S such that the pullback L of L to U is trivial. Then
L ∼= Lχ for some character χ : G→ Gm.

Proof. Fix a basis e ∈ L.
Let F be the sheaf on the category of affine S-schemes (with the étale topology) which to any

morphism of affine schemes S′ → S associates Γ(US′ ,O∗
US′ ). There is an inclusion of sheaves Gm ⊂ F

given by the inclusions Γ(S′,O∗
S′) ⊂ Γ(US′ ,O∗

US′ ). For any S′ → S and g ∈ G(S′), we get an element
ug ∈ F(S′) defined by the condition that g(e) = ug · e ∈ L. This defines a map of sheaves (not
necessarily a homomorphism)

f : G→ F . (3.9)

Suppose we have a map τ : U → BG and a quasi-coherent sheaf G on BG. The map τ factors
through ϑ : U → S. The pullback of G via S → BG is a G-equivariant quasi-coherent sheaf V on S.
In other words a sheaf V together with a homomorphism G → AutΛ(V ) ∼= Gm. Then the pullback
τ∗G is exactly the sheaf ϑ∗V together with the data of G→ Gm.

Saying that L ∼= Lχ is equivalent to say that L is a sheaf on U together with an additional
representation G → AutΛ(V ) ∼= Gm.Hence to prove the lemma it suffices to show that f has image
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The case of a normal affine scheme S 3. The Picard Group of the Stack M1,1,S

contained in Gm ⊂ F . Before starting the proof of the claim, note that it is clear that if this holds
than the map G→ Gm is a homomorphism. In fact, consider the diagram:

G×G ∼= Spec(Λ[u±
1 , r1, s1, t1])× Spec(Λ[u±

2 , r2, s2, t2]) Gm ×Gm

Spec(Λ[u±, r, s, t]) Gm.

f×f

m m̂

f

(3.10)

Since G is affine the map f is determined by a section γ ∈ Gm(G) = {c · um|c ∈ Λ∗}, and it is easy to
observe that the diagram commute.

Now we prove the claim. Since G is an affine scheme the map f is determined by a section
u0 ∈ F(G). Since G is normal and connected, this section u0 ∈ Γ(UG,O∗

UG
) can be written uniquely

as β∆m, where β ∈ Γ(G,O∗
G) and m ∈ Z. We need to show that m = 0. Let consider the following

diagram:

U UG U

S G S

ẽ

e

Note that the image of u0 under the map F(G) → F(S) defined by the identity section e : S → G is
equal to 1. It follows that ẽ♯(β ·∆m) = e♯(β) ·∆m is equal to 1 in Γ(U,O∗

U ) which implies that m = 0.

Observe that thanks to the considerations about the diagram 3.10 in the last proof, we have also
proven the following crucial lemma.

Lemma 3.2.6. Any homomorphism G→ Gm factors through the projection

χ0 : G→ Gm

(u, r, s, t) 7→ u.
(3.11)

We also need the following lemma.

Lemma 3.2.7. Let n,m ∈ Z be integers. Then Lχn
0

∼= Lχm
0

if and only if n ≡ m (mod 12).

Proof. Observe that Lχn
0
⊗ L−1

χm
0

∼= Lχn−m
0

, so it suffices to show that Lχn
0

∼= OM1,1,S
if and only if

12|n.
Choose a basis e ∈ Lχn

0
(U) such that G acts on e through χn

0 . Then an isomorphism Lχn
0

∼= OM1,1,S

is given by a function β ∈ Γ(U,O∗
U ) such that the action of G on β−1 · e is trivial. Equivalently, we

want a global section β ∈ Γ(U,O∗
U ) such that G acts on β through χn

0 . Since, as we have already seen,

Γ(U,O∗
U )
∼= Λ∗ ·∆Z

and G acts on ∆ through χ12
0 , such a unit exists if and only if 12|n.

Now we want to put all these results together.
Consider the map Pic(M1,1,S)→ Pic(U). This map is surjective (indeed, given a line bundle on

U , to obtain a line bundle onM1,1,S we only need the further information of the action of G, and we
can simply impose this action being trivial).

By 3.2.4, if L is a line bundle onM1,1,S then the pullback of L to U is isomorphic to the pullback
of a line bundle M on A1

S . It follows that any line bundle on M1,1,S is isomorphic to M ⊗ Lχ for
some character χ : G→ Gm. More such a line bundle M ⊗Lχ is trivial if and only if M is trivial and
Lχ is trivial.

The line bundle λ is trivialized over U by the invariant differential π and the action of (u, r, s, t) ∈ G
on π is through the character G → Gm sending (u, r, s, t) to u−1. So we obtain that the map 3.2 is
an isomorphism.
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3.3. Without the assumption of S being normal

If L is a line bundle on M1,1,S , there is a unique function s 7→ l(s) ∈ Z/12Z which associates to a
point s : Spec(k(s)) → S the unique power l(s) of λ such that Ls ⊗ λ−l(s) on M1,1,k(s) descends to
A1

k(s). Here we are using that we know the thesis for k(s) since we have proven the normal case in the
previous section.

Lemma 3.3.1. The function s 7→ l(s) is a locally constant function on S. Here locally means simply
with respect to the topology of S.

Proof. The assertion is local on S so we may assume that S is affine. Every morphism Spec(k) →
Spec(A) factors through Spec(Ared) (the reduced structure). Thus, we can assume the scheme to be
reduced (the underlying topology is the same). Furthermore, the assertion can be verified on each
irreducible component since any two irreducible closed sets on a connected component have non trivial
intersection. So we may assume that S is integral. Finally, if S̃ → S is the normalization then it
suffices to verify the assertion for S̃. In this case the result follows from section 3.2.

In particular if S is connected we obtain a homomorphism

Ψ: Pic(M1,1,S)→ Z/12Z (3.12)

sending λ to 1.
We say that a scheme S has the ♣ property if it satisfies the following condition:

For each line bundle L on M1,1,S such that for every field valued point s : Spec(k(s))→ S the sheaf
L|M1,1,k(s)

is pulled-back from a sheaf L|A1
k(s)

on A1
k(s), then there exists a unique line bundle L, up

to isomorphism, on A1
S such that π∗L ∼= L.

In other words, a scheme S has the ♣ property if and only if the kernel of 3.12 is isomorphic to
Pic(A1

S).
Theorem 3.2 says exactly that reduced connected schemes and connected Z[1/2]-schemes have the

♣ property. Before proceeding to prove Theorem 3.2 we need to simplify the problem.

Lemma 3.3.2. Let S be a scheme. Suppose that every Si = Spec(Ri) ⊂ S (open affine subscheme
of S) has the property ♣. Then S has the property ♣.

Proof. Let L be a line bundle onM1,1,S such that for every field valued point s : Spec(k(s))→ S the
sheaf L|M1,1,k(s)

is pulled-back from a sheaf L|A1
k(s)

on A1
k(s). We want to construct a line bundle L

on A1
S whose pull back to M1,1,S is L.

Let {Si}i be an affine cover of S. If s : Spec(k(s)) → S is a point which factors through Si we
have the following situation

M1,1,k(s) A1
k(s) Spec(k(s))

M1,1,Si
A1

Si
Si

M1,1,S A1
S S.

πs

πi

π

Since {Si}i is an open cover for S, thus {A1
Si
} is an open cover for A1

S . Since the Si’s are affine,
by hypothesis they have the ♣ property. Hence there exists a unique line bundle Li on A1

Si
such

that π∗
i (Li) = Li := L|M1,1,Si

. Moreover, notice that there is a natural isomorphism Li
∼= πi∗(Li) =

πi∗π
∗
i (Li).

Suppose that such an L exists. Then it is straightforward unique since L|A1
Si

∼= Li by the uniqueness
of Li.

For the existence of such an L, we claim that the Li’s glue together. It is clear that if this happens,
then π∗L ∼= L since this isomorphism is a local property and it can be verified on each Si.
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Observe that since L is a line bundle, there is a natural isomorphism

Ψij : Li|M1,1,Si∩Sj

∼= Lj |M1,1,Si∩Sj
.

Hence, exploiting the fact that Li
∼= πi∗(Li) for all i, we can push forward the isomorphism Ψij via π

to obtain an isomorphism

πi∗Ψij = Φij : Li|A1
Si∩Sj

Lj |A1
Si∩Sj

.
∼=

Furthermore, it is clear that it satisfies the cocycle condition since for Ψij the condition holds. Hence
the Li’s glue together and this guarantees the formation of the line bundle L over A1

S .

Observation 3.3.3. It follows from the previous lemma that if we want to prove the Theorem 3.0.1
in the case of S connected and reduced, we can suppose S connected, reduced and affine too. In the
same way, when S is a connected Z[1/2]-scheme we can suppose to be affine too. Moreover, we can
suppose S = Spec(R) to be noetherian. Actually, once the thesis is proven for noetherian schemes,
we obtain the general result in the following way:

we can write Spec(R) = lim←−Spec(Rα) = lim←−Sα with Rα noetherian. We obtain the diagram

M1,1,k(s) A1
k(s) Spec(k(s))

M1,1,S A1
S S

M1,1,Sα A1
Sα

Sα.

πs

g

π

fα hα

πα

All the squares are cartesian. Given a line bundle L onM1,1,S , there exists a β and a OM1,1,Sβ
-sheaf

Lβ , such that L ∼= f∗
βLβ . Moreover, L ∼= lim−→Lα where Lα = f∗

α,βLβ for all α ≥ β. For these results
see [Gro66], Paragraph 8.2.

In particular, if we know that Sβ has the ♣ property, then there exists Lβ line bundle on A1
Sβ

such
that π∗

βLβ = Lβ and therefore h∗
αLβ is the line bundle from which L descents.

3.4. The case when S is reduced

In this section we always assume that S is a reduced connected scheme.
In order to prove the Theorem 3.0.1, it remains to show that the Kernel of the map 3.12 is equal

to Pic(A1
S) (following the notation of the previous section it means that reduced connected schemes

have the ♣ property). By Lemma 3.3.2 and Observation 3.3.3, it suffices to prove the thesis for an
affine connected noetherian reduced scheme S = Spec(R).

To complete the proof of 3.2 in the case when S is reduced, we make some general observations
about the relationship between line bundles on a stack and line bundles on the coarse moduli space.

Let S be a noetherian scheme and X → S be a Deligne-Mumford stack over S. Let π : X → X
be the coarse moduli space, and assume that the formation of the coarse space X commutes with
arbitrary base change on S and that X is reduced (we just saw that this holds for M1,1,S over a
reduced scheme). For a field valued point x : Spec(k) → S let πx : Xx → Xx denote the base change
X ×S x→ X ×S x.

Proposition 3.4.1. Let L be a line bundle on X such that for every field valued point x : Spec(k)→ S
the sheaf πx∗(L|Xx) is locally free of rank 1 and (πx)

∗(πx)∗(L|Xx)→ L|Xx is an isomorphism. If X → X
is flat, then the sheaf π∗L is locally free of rank 1 on X and π∗π∗L→ L is an isomorphism.

Proof. One immediately reduces to the case when X = Spec(R), Y = Spec(B) is a finite flat R
scheme, Γ is a finite group acting on Y over X such that X = [Y/Γ] (indeed étale locally on the coarse
space every Deligne-Mumford stack can be presented in this way (Proposition 1.8.4). Let M denote
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3. The Picard Group of the Stack M1,1,S The case when S is a Z[1/2]-scheme

the B-module corresponding to L, so that M comes equipped with an action of Γ over the action on
B. We can even assume that R is a local ring and that M is a free R-module (forgetting the B-module
structure). We are then trying to compute the kernel of the map

M →
∏
ι∈Γ

M,

m 7→ (. . . , ι(m)−m, . . . )ι∈Γ.

(3.13)

We can also assume that S = Spec(Λ) is affine.

Lemma 3.4.2. Let R be a reduced local Λ-algebra and let A ∈Mn×m(R) be a matrix (which we view
as a map Rn → Rm) with the property that for every x ∈ Spec(Λ) the matrix A(x) ∈Mn×m(R⊗Λk(x))
has kernel a free R ⊗Λ k(x)-space of rank 1. Then Ker(A) is a free rank 1 module over R and for
every x ∈ Spec(Λ) the natural map Ker(A)⊗Λ k(x)→ Ker(A(x)) is an isomorphism.

Proof. We proceed by induction on n. If n = 1, then the assertion is that A is a matrix with A(x)
the zero matrix for all x ∈ Spec(Λ). Since R is reduced this implies that A is the zero matrix.

For the inductive step consider the system of m equations∑
i

aijXi = 0 (3.14)

that we are trying to solve in R. If x ∈ Spec(Λ) is the image of the closed point of Spec(R), then A(x)
is not zero since n ≥ 2. Since R is local some aij is invertible and so we can solve for the variable Xi.
This gives a system of m− 1 equations in n− 1 variables, which again has the property that for every
point x ∈ Spec(Λ) the image in R ⊗ k(x) has a unique line of solutions. By induction we obtain the
result.

With this lemma we have proven the main proposition.

If we apply Proposition 3.4.1 with X =M1,1,S we obtain exactly the proof of 3.2 (ii), i.e. of the
theorem when S is reduced.

3.5. The case when S is a Z[1/2]-scheme

We state now a technical theorem without proof. It will be useful to prove the proposition below.

Theorem 3.5.1. Let A be a noetherian local ring, a ⊂ A an ideal of definition and X a proper stack.
Then the functor sending a sheaf to its reductions modulo an defines an equivalence of categories
between the category of coherent sheaves on X and the category of compatible systems of coherent
sheaves on the reductions Xn := X ×Spec(A) Spec(A/an).

Proof. See [Ols05], Theorem 1.4.

We need a preliminary Proposition in order to approach our case.

Proposition 3.5.2. For any scheme S over Z[1/2] and any coherent OS-module M , the sheaf

R1π∗(OM1,1,S
⊗OS

M)

is zero, where π is the usual projection π :M1,1,S → A1
S .

Proof. (Step 1) In this step we show how to reduce the problem to the study of the case S = k with
k an algebraically closed field of characteristic 3.

For a sheaf of modules being zero is a local property with respect to the flat topology. So, after the
flat composition OS → OS, p → ÔS, p for all p point of S, we may further assume that S is the spectrum
of a complete noetherian local ring A (being noetherian can be assumed because of Observation 3.3.3).
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We claim that the thesis over Spec(A/mn) for all n is true. Moreover, by Theorem 3.5.1, the claim is
sufficient. In fact, consider the diagram

M1, 1, A/mn M1, 1, A

A1
A/mn A1

A

Spec(A/mn) Spec(A).

vn

πn π

ρn

The sheaf R1π∗(OM1, 1, A
⊗AM) corresponds to the data of {ρ∗n(R1π∗(OM1, 1, A

⊗AM))}n∈N. They
are equal to {(R1πn∗(v

∗
n[OM1, 1, A

⊗AM))]}n∈N which by our claim are equal to zero, and so the thesis.
Therefore we must prove our claim and so we reduce to the case A/mn, that is a local artinian

ring.
Let k be the residue field of A/mn and let J ⊂ A be the ideal J = mn−1/mn. J is annihilated by

the maximal ideal m (so that J is a vector space). Set A0 := A/J = A/mn−1. Pushing forward the
exact sequence

0 J ⊗OM1, 1, k
OM1, 1, A

OM1, 1, A0
0,

to A1
A we obtain a commutative diagram

0 J ⊗ (π∗OM1, 1, k
) π∗OM1, 1, A

π∗OM1, 1, A0

0 OA1
k
⊗ J OA1

A
OA1

A0
0.

a b c

Suppose to have prove the thesis for a field k, i.e. to know that a is an isomorphism. For inductive
hypothesis we also know that c is an isomorphism and so b is an isomorphism too.

Hence, it follows that it suffices to consider the case S = Spec(k). Furthermore, if the characteristic
is not 3, the result follows from the fact the stack is tame. So it suffices to consider S = Spec(k) with
char(k) = 3, and M = k. We may further assume that k is algebraically closed.

(Step 2) In this step we show how to reduce the problem to a calculation on cohomology of
groups.

The coherent sheaf R1π∗(OM1, 1, k
) restricts to the zero sheaf on A1

k − {0}, since over this open
subset of A1

k the stackM1, 1, k is tame, simply because it is a µ2-gerbe. Let x̄→M1, 1, k be a geometric
point mapping to 0 in A1

k, and let A denote the completion of OM1, 1, k x̄ along the maximal ideal. Let
Γx̄ denote the stabilizer group scheme of x̄, so that Γx̄ acts on A. The ring of invariants B := AΓx̄

is equal to the completion of A1
k at the origin. Let F denote the finite type B-module obtained by

pulling back R1π∗(OM1, 1, k
) to Spec(B). Then F is equal to the cohomology group H1(Γx̄, A). We

show that this group is zero. Since F is supported on the closed point of Spec(B), there exists an
integer n such that jnF = 0 (in fact j ∈ B is the uniformizer defined by the standard coordinate on
A1). Hence, to prove the proposition it suffices to show that F is j-torsion free.

For this, we use an explicit description of A and Γx̄ given by the Legendre family. Let

V = Spec(k[λ][1/λ(λ− 1)]),

and let EV → V be the elliptic curve

EV := Y 2Z = X(X − Z)(X − λZ).

For comfort we now translate, so let µ denotes λ+1. Then the j-invariant of EV which is 28 (λ2−λ+1)3

λ2(1−λ)2

becomes equal to µ6

µ4−1 (recall that char(k)=3). The map V →M1, 1, k defined by EV is étale, so it
defines an isomorphism A ∼= k[[u]]. We have seen in Theorem 2.4.1 that the group Γx̄ sits in an exact
sequence

1 {±1} Γx̄ S3 1.
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To be more precise, the isomorphisms of a curve of the form y2 = x3+ a4x
2+ a6 over an algebraically

closed field of characteristic 3 are of the form

x = u2x′ + r

y = u3y′,

with u and r satisfying u4 = 1 and r3 + a4r + a6(1 − u6) = 0. The pair (u, r) = (−1, 0) which
generates the subgroup of Γx̄ corresponding to {±1}, is the classic involution of elliptic curves, and it
acts trivially on k[[µ]] as we have already seen in Lemma 3.1.1.

To understand the action of S3 we use a different argument. Two elliptic curves over the Legendre
family are isomorphic if and only if λ ∈ {λ, 1

λ , 1−λ, 1
1−λ ,

λ
λ−1 ,

λ−1
λ }. Given λ ∈ k, these six values are

all different except that for λ = −1 (since we are in char(k) = 3, then −1 = 2 = 1
2 ). Observe that the

group S3 acts on V. To be more explicit, it defines a morphism of groups

S3 ↪→ Aut(V )

(23) 7→ [λ 7→ 1− λ]

(312) 7→ [λ 7→ λ− 1

λ
].

This action lifts to isomorphisms of elliptic curves that, as already observed, in the case λ = −1 (which
we recall coincides with j = 0) are automorphisms. In particular, for uniqueness, we have found the
subgroup of Γx̄ isomorphic to S3 and its action on V . After the translation µ = λ + 1 we obtain
[λ 7→ 1− λ] 7→ [µ 7→ −µ] =: α and [λ 7→ λ−1

λ ] 7→ [µ 7→ µ
1−µ ] =: β.

Recapping: we have proved that the action of Γx̄ on A ∼= k[[u]] factors through the action of S3

given by the two automorphisms
α : µ 7→ −µ

and
β : µ 7→ µ

1− µ
= µ(1 + µ+ µ2 + . . .).

If we consider the Lyndon/Hochschild-Serre Spectral Sequence associated, see Theorem 6.8.2 in
[Wei95] for more details, we obtain:

Epq
2 = Hp(S3, H

q({±1}, A)) =⇒ Hp+q(Γx̄, A).

and the exact sequence in the lower degree filtration:

0 H1(Γx̄/{±1}, A{±1}) H1(Γx̄, A) H1({±1}, A)Γx̄/{±1} . . . .

This sequence coincides with

0 H1(S3, A) H1(Γx̄, A) 0 . . . .

since the action of {±1} is trivial and H1({±1}, A)) = Hom(A,Z/2Z) = 0. Hence H1(Γx̄, A) ∼=
H1(S3, A).

(Step 3) In this final step, we prove that H1(S3, A) = 0.
By standard facts about group cohomology, an element in H1(S3, A) can be represented by a set

map ξ : S3 → k[[µ]] (written σ 7→ ξσ) such that for σ, τ ∈ S3 we have (recall the action is a right
action)

ξστ = ξτσ + ξτ . (3.15)

The class of ξ is trivial if there exists an element g ∈ k[[µ]] such that ξσ = gσ − g for all σ ∈ S3. Note
that equation 3.15 implies that it suffices to check the equality ξσ = gσ − g for a set of generators of
S3.

If ξ represents a class in H1(S3, A) annihilated by j, then there exists an element g ∈ k[[µ]] such
that

µ6

µ4 − 1
ξσ = gσ − g (3.16)
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for all σ ∈ S3. To prove that H1(S3, A) is j-torsion free, it therefore suffices to show that for such a
ξ we can choose g to have µ-adic valuation ≥ 6 (since A is j-torsion free). In this way ξ is a multiple
of µ6

µ4−1 and so its class in H1(S3, A) is zero.
For this, first of all note that we can assume without loss of generality that g has no constant term,

and then write
g = a1µ+ a2µ

2 + a3µ
3 + a4µ

4 + a5µ
5 + g≥6, (3.17)

where g≥6 has µ-adic valuation ≥ 6.
We have that

µ6

µ4 − 1
ξα = 2a1µ+ 2a3µ

3 + 2a5µ
5 + (gα≥6 − g≥6),

which implies that a1 = a3 = a5 = 0.
Instead we have that

µ6

µ4 − 1
ξβ = a2(

µ

1− µ
)2 + a4(

µ

1− µ
)4 − a2µ

2 − a4µ
4 + (higher order terms)

and hence
(1− µ)4µ6

1− µ4
ξβ = a2µ

2(1− µ)2 − a2µ
2(1− µ)4 +

+ a4µ
4 − a4µ

4(1− µ)4 +

+ (higher order terms).

We observe that on the right hand side the term with µ2 disappears and the lowest order term is the
one with µ3, in particular −2a2µ3+4a2µ

3 = 2a2µ
3, and therefore a2 = 2. Replacing a2 with zero, the

lowest order term om the right hand side becomes a4µ
5 and at the same way a4 = 0 as desired. This

completes the proof.

We are now ready to give a proof of the Theorem 3.0.1, part (i).

Proof. Let S be a connected Z[1/2]-scheme. We need to show that if L is a line bundle on M1,1,S

such that for any field-valued point s ∈ S the fiber Ls onM1,1,S descends to A1
s, then L descends to

A1
S . An other way to say this is, following the notation of Section 3.3, that we need to show that S

has the ♣ property.
By Lemma 3.3.2 and Observation 3.3.3, it suffices to prove the thesis for an affine connected

noetherian Z[1/2]-scheme S = Spec(Λ). Let J ⊂ Λ denote the nilradical. By the reduced case already
treated in the previous section, it suffices to show inductively that if the result holds for Λ/Jr then it
also holds for Λ/Jr+1. We are in the following situation:

M1,1,Λ/Jr A1
Λ/Jr Spec(Λ/Jr)

M1,1,Λ/Jr+1 A1
Λ/Jr+1 Spec(Λ/Jr+1)

π

g

π

Let L denote a line bundle on M1,1,Λ/Jr+1 such that for any field-valued point s ∈ S the fiber
Ls descend to A1

k(s). We want to show that there exists a line bundle L on A1
Λ/Jr+1 whose pull

back is L. By inductive hypothesis, there is a line bundle L0 on A1
Λ/Jr such that π∗L0 = g∗L

on M1,1,Λ/Jr . Our claim is that L is pulled back from a lifting of L0 to A1
Λ/Jr+1 . Observe that

Spec(Λ/Jr) → Spec(Λ/Jr+1) is a closed embedding defined by the square zero ideal I = Jr/Jr+1.
Since the diagram is cartesian the other vertical arrows are closed embedding defined by a square
zero ideal too (in the sense of stacks). So the hypothesis of Theorem 6.4 of [Har10] are satisfied
and we can apply it to conclude. Since H2(A1

Λ/Jr , Jr/Jr+1 ⊗OA1
Λ/Jr

) is zero, a lifting for L0 exists,
and it is unique since the group H1(A1

Λ/Jr , Jr/Jr+1 ⊗ OA1
Λ/Jr

) = 0 acts transitively on the set of
all isomorphism classes of deformations L̄ of L0 over A1

Λ/Jr+1 . We denote with L this lifting. By
construction, π∗L is a lifting of g∗L. If we prove that it is isomorphic to L we are done. Again, it
suffices to prove that H1(M1,1,Λ/Jr , Jr/Jr+1 ⊗ OM1,1,Λ/Jr ) is zero. Since A1

Λ/Jr is affine, the group
H1(M1,1,Λ/Jr , Jr/Jr+1 ⊗ OM1,1,Λ/Jr ) is zero if and only if the sheaf R1π∗(J

r/Jr+1 ⊗ OM1,1,Λ/Jr ) is
zero on A1

Λ, which follows from Proposition 3.5.2.
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3.6. Computations in characteristic 2

Proposition 3.6.1. Let k be a field of characteristic 2, and let π : M̄1,1,k → P1
k be the morphism

defined by the j-invariant. Then R1π∗OM̄1,1,k
is a line bundle on P1

k of negative degree.

Proof. First of all, suppose without loss of generality that k is algebraically closed. We divide the
proof in steps.

(Step 1). In this step we prove that in general, if f : G → X is a Z/2-gerbe in characteristic 2,
the sheaf R1f∗OG is locally free of rank 1, and in fact it is canonically trivialized.

This can be seen as follows. There is an étale cover {Ui}i which trivializes the gerbe, i.e. if
U is an open of the cover, GU := G ×X U ∼= B(Z/2) × U ∼= [U/(Z/2)] and the action ρ : G → U
is trivial. Let fU : GU → U the morphism into the coarse moduli space. Suppose without loss of
generality U to be affine, say U = Spec(R). Clearly by the definition of cohomology of group, it
follows that R1f∗

UOGU
= H1(Z/2, R). By definition, an element in H1(Z/2, R) is represented by a set

map ξ : Z/2→ R (written σ 7→ ξσ) such that for σ, τ ∈ Z/2 we have ξστ = ξτσ + ξτ . But the action is
trivial, thus we have ξστ = ξσ + ξτ , hence ξ ∈ HomGrp(Z/2, R) ∼= R. So we have R1f∗

UOGU
∼= OU .

Similarly, consider the locally constant sheaf Z/2 on G. The sheaf R1f∗(Z/2) is locally isomor-
phic to Z/2. In fact, if we take a trivializing étale open U for the gerbe as above, R1f∗(Z/2)|U ∼=
R1f |U,∗((Z/2)U ) for base change Theorem, see [Sta22] Tag [0EY U ]. In the same way as before,
R1f |U,∗((Z/2)U ) = H1(Z/2,Z/2) ∼= Z/2Z.

Since we are in characteristic 2, we have a natural map Z/2→ OG , which leads to f∗Z/2Z→ f∗OG .
Again, since we are in characteristic 2, we can tensor with OX to obtain a morphism of OX -sheaves
Ψ: f∗Z/2Z ⊗Z/2 OX → f∗OG . This map is an isomorphism: if we restrict Ψ to an appropriate étale
cover {Ui}i, it is exactly what we have verified with the initial discussion.

Finally, the sheaf f∗(Z/2) ∼= Z/2. Actually, locally we have seen it works. Moreover, the transition
maps between the trivializing opens must be the identity since a group of order 2 admits just the
trivial automorphism. This concludes the proof of our initial claim.

Recall that in the case of GU = U ×B(Z/2) and U = Spec(R) we have

H1(G,OG) ∼= HomGrp(Z/2, R)

and the trivialization is given by the homomorphism sending 1 ∈ Z/2 to 1 ∈ R.
(Step 2). In this step we prove that the sheaf R1π∗(OM̄1,1,k

) is locally free of rank 1 on P1
k.

Let U∞, U0 ⊂ M̄1,1,k denote the open substacks of M̄1,1,k obtained pulling back the affine standard
open covers U∞, U0 ⊂ P1

k (respectively the complement of j = 0 and the complement of j =∞).
The stack U∞ is a Z/(2)-gerbe over U∞ (see Proposition 2.4.1), hence for the argument of Step

1., we deduce that R1π|U∞(OU∞) is locally free of rank 1. Moreover, R1π∗(OM̄1,1,k
) is coherent. In

fact, if f : V → M̄1,1,k is a smooth atlas, R1π∗(OM̄1,1,k
) is a sub-sheaf of R1(π ◦ f)∗(OV ). However,

R1(π ◦ f)∗(OV ) is coherent since the map π ◦ f is proper and P1
S locally noetherian (we are applying

Proposition 30.19.1 of [Sta22] Tag [02O3]), and so R1(π ◦ f)∗(OM̄1,1,k
) is coherent too. Since P1

k

is a smooth curve, if we prove that R1(π ◦ f)∗(OM̄1,1,k
) is torsion-free then it is necessarily free.

Furthermore, the rank is 1 because so is that of R1π|U∞(OU∞).
Furthermore, the only issue is at the point j = 0. Since the formation of cohomology commutes

with flat base change, it suffices to show that

H1(M̄1,1,k ×P1 Spec(k[[j]]),OM̄1,1,k×P1Spec(k[[j]])) (3.18)

is j-torsion-free.
For this we use the Hesse presentation of M̄1,1,k. For the details about the fact that it is indeed a

presentation for the stack and a direct computation we urge the reader to see the Appendix A in the
article [Shi19] where everything is excellently exposed. Let

V = Spec(k[µ, ω][1/(µ3 − 1)]/(ω2 + ω + 1)),

and let EV → V be the elliptic curve given by the equation

X3 + Y 3 + Z3 = µXY Z.
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The elliptic curve has a basis for its three-torsion group given by the points [1, 0,−1] and [−1, ω, 0],
and identity section [1,−1, 0]. In fact, this is the universal elliptic curve with full level three structure.
The j-invariant of EV is µ12

(µ3−1)3 since we are in characteristic 2. In particular, the fiber over j = 0 is
the curve X3 + Y 3 + Z3 = 0.

Changing the choice of a basis for the 3-torsion subgroup, defines an action of GL2(Z/3) on V
such that M̄1,1,k

∼= [V/GL2(Z/3)]. A calculation shows that this action is described as follows:
(µ, ω) ⋆

(
1 0
−1 1

)
= (ωµ, ω)

(µ, ω) ⋆
(
0 −1
1 0

)
= (µ+2

µ−1 , ω)

(µ, ω) ⋆
(
1 0
0 −1

)
= (µ, ω2)

Putting this together one finds that

M̄1,1,k ×P1 Spec(k[[j]]) ∼= [Spec(k[[µ]]/SL2(Z/3)], (3.19)

where α =
(

1 0
−1 1

)
acts by µ 7→ ζ3µ (for some fixed primitive cube root of unity ζ3) and β =

(
0 −1
1 0

)
acts by µ 7→ µ

µ−1 .
As in the proof of Proposition 3.5.2, an element of 3.18 is given by a set map ξ : SL2(Z/3)→ k[[µ]]

(written σ 7→ ξσ) such that for any two elements σ, τ ∈ SL2(Z/3) we have

ξστ = ξτσ + ξτ ,

and the class of ξ is trivial if there exists an element g ∈ k[[µ]] such that for every σ we have ξσ = gσ−g.
Now, if 3.18 has j-torsion, there exists a set map ξ as above and an element g ∈ k[[µ]] such that

for all σ we have
µ12

µ3 − 1
ξσ = gσ − g.

To prove that 3.18 is torsion-free, it suffices to show that we can choose g to be divisible by µ12.
We can without loss of generality assume that g has no constant term. Write

g = a1µ+ a2µ
2 + . . .+ a11µ

11 + g≥12.

Then gσ − g has µ-adic valuation ≥ 12 for all σ, so this is in particular for σ = α. However, gα − g
= a1(ζ3 − 1)µ+ a2(ζ

2
3 − 1)µ2 + a4(ζ4 − 1)µ4 + . . . and this implies that all the the coefficients ai but

a3, a6 and a9 are zero. So
g = a3µ

3 + a6µ
6 + a9µ

9 + g≥12.

Similarly, gβ − g has µ-adic valuation ≥ 12. Looking at the coefficient of µ4 in gβ − g one sees that
a3 = 0. Then looking at the coefficient of µ7 one sees that a6 = 0, and finally looking at the coefficient
of µ10 one sees that a9 = 0. The calculation is omitted, since it is substantially equal to the case of β
in the Proposition 3.5.2.

This concludes the proof that R1π∗OM̄1,1,k
is locally free of rank 1 on P1

k.
(Step 3). The final step consists in showing that the degree of R1π∗OM̄1,1,k

is negative.
Let M denote the cohomology group 3.18 (a k[[j]]-module) and let Mη denote the pullback

M ⊗k[[j]] k[[j]][1/j]. Let e∞ ∈ Mη denote the basis element defined by the canonical trivialization of
R1π∗OM̄1,1,k

over U∞. The lattice M ⊂Mη defines a valuation ν on Mη and, for the standard argu-
ments about the sheaves O(i)’s of P1

k, the thesis is equivalent to show that ν(e∞) < 0. Equivalently,
we have to show that for any element m ∈ M , if we write m = he∞ in Mη then the j-adic valuation
of h is positive.

For this again we use the presentation 3.19. An element m ∈ M is then represented by a map
ξ : SL2(Z/2) → k[[µ]]. The corresponding element in Mη can be described in terms of the basis e∞
as follows. First of all, the element ξβ2 ∈ k[[µ]] is SL2(Z/2)-invariant, since for any other element σ
we have

ξσβ2 + ξσ = ξβ2σ = ξσβ2 = ξβ
2

σ + ξβ2 = ξσ + ξβ2 .

The second equality works since β2 =
(−1 0

0 −1

)
commutes with every element of SL2(Z/2), and the

last equality since β2 acts on µ by µ 7→ µ
µ−1 7→

µ
1−2µ = µ (in other words β2 acts trivially on k[[µ]]).
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Therefore, ξβ2 is actually an element in k[[j]]. The image of ξ in Mη
∼= Hom(Z/2, k[[j]][1/j]) is then

equal to the homomorphism

Z/2→ k[[j]][1/j]

1 7→ ξβ2 .

The class e∞ corresponds to the homomorphism sending 1 to 1, so we have to show that the j-adic
valuation of ξβ2 is positive. For this, let f = ξβ . Then

ξβ2 = fβ + f = f(µ(1 + µ+ µ2 + . . .)) + f(µ).

Since we are in characteristic 2, it follows that the µ-adic valuation of ξβ2 is at least 2, and therefore
the j-adic valuation of ξβ2 is positive, which proves the thesis.

Observe that in particular H0(P1
k, R

1π∗OM̄1,1,k
) = 0. From this fact we can prove the following

fact.

Corollary 3.6.2. For any field k, we have H1(M̄1,1,k,OM̄1,1,k
) = 0.

Proof. We have that R1π∗OM̄1,1,k
= 0 when char(k) ̸= 2. Actually when char(k) ̸= 2, 3 it follows

from the fact that the stack is tame. When char(k) = 3 it follows from Proposition 3.5.2. It follows
that

H0(P1
k, R

1π∗OM̄1,1,k
) = 0

in all characteristics. From the Leray Spectral Sequence, see Theorem 5.8.6 in [Wei95], which is a
particular case of the Grothendieck Spectral Sequence, see Theorem 5.8.3 in [Wei95] we obtain

0 H1(P1
k,OP1

k
) H1(M̄1,1,k,OM̄1,1,k

) H0(P1
k, R

1π∗OM̄1,1,k
)

and from the fact that the first and the third term are equal to zero, it follows that

H1(M̄1,1,k,OM̄1,1,k
) = 0.

Counter Example 3.6.3. We want to prove that Theorem 3.0.1 fails in the case in which S =
Spec(k[ε]/(ε2)) with char(k) = 2.

Note that, as we have seen in Proposition 3.6.1, if char(k) = 2, then the restriction of R1π∗OM̄1,1,k

to A1
k ⊂ P1

k is nonzero. From the Leray Spectral Sequence, applied as in the previous corollary, we
obtain

0 = H1(A1
k,OA1

k
) H1(M1,1,k,OM1,1,k

) H0(A1
k, R

1π∗OM1,1,k
) ̸= 0.

f

Then f is not an isomorphism.
Since the group H1(M1,1,k,OM1,1,k

) classifies deformations of the structure sheaf toM1,1,k[ε]/(ε2),
see [Har10] Proposition 2.5 this implies that there are line bundles L on M1,1,k[ε]/(ε2) such that for
every point s → k[ε]/(ε2), Ls descends to A1

k(s), but are not trivial. These represents the counter
examples.
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APPENDIX A
Tame Stacks

In characteristic 0 Deligne-Mumford stacks own some nice properties that make them easy to
study. In particular, let M be a Deligne-Mumford stack and M → M its coarse moduli space.
Étale locally on M , we can present M as a quotient stack 1.8.4. From this fact it follows that,
in characteristic 0, the formation of M commutes with arbitrary base change. A key property in
characteristic 0 is that the pushforward functor (Qcoh(M))→ (Qcoh(M)) is exact.

In characteristic p > 0 these results are not true. The main problems that one can encounter ap-
pear when one consider algebraic stack with finite ramified diagonal (hence not Deligne-Mumford).
Moreover, even limiting oneself to consider Deligne-Mumford stacks in characteristic p > 0, some
desired properties don’t hold, such as flatness of moduli spaces. This happens when the order of
the stabilizers are divisible by the characteristic.

For these reasons, tame stacks are studied. These stacks are a good substitute of the Deligne-
Mumford stacks in positive and mixed characteristics. Their defining property is precisely the
key property described above: an algebraic stack with finite diagonal is tame if and only if the
pushforward functor (Qcoh(M))→ (Qcoh(M)) is exact. The pleasant consequence of this property
is that other desirable properties follow as corollaries. For example, for tame stacks an analogous
of Theorem 1.8.4 holds and the formation of coarse moduli space commutes with arbitrary base
change.

The study of tame stack goes beyond the purpose of the thesis; therefore in this section we just
present (without proof) the facts we need for our applications to the stack of elliptic curves. For
more details we urge the reader to view the original article [AOV08].

Throughout the section all schemes are assumed to be quasi-separated. Moreover, recall that
we consider only flat, finite and finitely presented affine group schemes over a scheme S.

We start by defining linearly reductive group schemes. We need to define them because they
are indeed exactly the automorphism groups of the geometric points of tame stacks.

Definition A.0.1. A group scheme G→ S is linearly reductive if the functor

(QcohG(S))→ (Qcoh(S))

F 7→ FG

is exact.

Observation A.0.2. If k is a field, since the category of quasi-coherent sheaves on Spec(k) with
an action of G is equivalent to the category of finite-dimensional representations of G (Proposition
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1.10.7), hence a finite group scheme over a field is linearly reductive if and only if the functor
V 7→ V G, from finite-dimensional representations of G to vector spaces, is exact.

Another way to state this condition is that every finite-dimensional representation of G is a
sum of irreducible representations.

We state some nice properties about linearly reductive group schemes.

Proposition A.0.3. Let S′ → S be a morphism of schemes, G→ S a group scheme, G′ := S′×SG.

1. If G→ S is linearly reductive, then G′ → S′ is linearly reductive.

2. If G′ → S′ is linearly reductive and S′ → S is flat and surjective, then G → S is linearly
reductive.

Proof. See [AOV08], Proposition 2.6.

Proposition A.0.4. The class of linearly reductive schemes is closed under taking

1. subgroups schemes,

2. quotients, and

3. extensions.

Recall that datum of flat, finite and finitely presented affine group scheme G = Spec(A) over
a scheme S = Spec(R) is equivalent to the datum of a finite flat Hopf algebra A over R. In
particular, we have morphisms

m : A⊗A→ A,

c : A→ A⊗A,

R→ A,

e : A→ R,

i : A,→ A,

where c, e and i are the data of the definition of R-Hopf algebra, R→ A is the structural morphism
and m is the multiplication map. Dualizing A and the morphisms we obtain

m∨ : A∨ → A∨ ⊗A∨,

c : A∨ ⊗A∨ → A∨,

A∨ → R,

e∨ : R→ A∨,

i∨ : A∨,→ A∨.

With these morphisms, A∨ becomes an R-Hopf algebra, with A∨ finite and flat over R, and
G∨ := Spec(A∨) is called Cartier dual of G.

Definition A.0.5 (Diagonalizable group). We will say that a finite group scheme ∆ → S is
diagonalizable if it is abelian and its Cartier dual is constant.

We say that it is locally diagonalizable if locally in the fpqc topology is diagonalizable.
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Definition A.0.6 (Tame group). We say that a finite étale group scheme H → S is tame if its
degree is prime to all residue characteristics.

Definition A.0.7. A group scheme π : G → S is well-split if it is isomorphic to a semidirect
product H ⋉∆, where H is constant and tame and ∆ is diagonalizable.

It is locally well-split if there is an fpqc cover {Si → S}, such that the group scheme Si×SG→ Si

is well-split for each i.

Proposition A.0.8. Every locally-split group scheme is linearly reductive.

Proof. See [AOV08], Proposition 2.10.

Observe that in characteristic 0 every finite flat group scheme is linearly reductive: actually, it
is étale and tame, hence locally constant, hence locally well-split.

In positive characteristic the things are more complicated.
The viceversa of the previous proposition is not true, but it is true in a particular case:

Proposition A.0.9. Let k be a field, G → Spec(k) a finite group scheme. Then G is linearly
reductive if an only if it is locally well-split.

Proof. See [AOV08], Proposition 2.13.

After this brief introduction we are ready to give the definition of tame stack, a notion that
we will use for Lemma 3.1.2 in chapter 4. Let S be a scheme, M→ S a locally finitely presented
algebraic stack over S, with finite diagonal. Hence by the Theorem 1.8.2 we know that it has the
coarse moduli space ρ :M→M .

Definition A.0.10 (Tame Stack). The stackM is said to be tame if the functor

ρ∗ : (Qcoh(M))→ (Qcoh(M))

is exact.

For example, when G→ S is a finite flat group scheme, then the moduli space of BSG→ S is
S itself; so BSG is tame if and only if G is linearly reductive.

The main theorem about tame stacks is the following.

Theorem A.0.11. The following conditions are equivalent:

1. M is tame.

2. If k is an algebraically closed field with a morphism Spec(k) → S and ξ is an object of
M(Spec(k)), then the automorphism group scheme Autk(ξ)→ Spec(k) is linearly reductive.

3. There exists an fppf cover M ′ → M , a linearly reductive group scheme G → M ′ acting on a
finite and finitely presente scheme U →M ′, together with an isomorphism

M×M M ′ ∼= [U/G]

of algebraic stacks over M ′.

4. Same as the 3., but M ′ →M is assumed to be étale and surjective.

Proof. See [AOV08], Theorem 3.2.
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Corollary A.0.12. LetM be a tame stack over a scheme S and letM→M be its moduli space.

1. If M ′ →M is a morphism of algebraic spaces, then the moduli space of M ′ ×M M is M ′.

2. If M is flat over S, then M is also flat over S.

Proof. See [AOV08], Corollary 3.3

We conclude stating some immediate corollaries.

Corollary A.0.13. IfM→ S is a tame stack and S′ → S is a morphism of schemes, then S′×SM
is a tame stack over S′.

Corollary A.0.14. The stack M → S is tame if and only if for any morphism Spec(k) → S,
where k is an algebraically closed field, the geometric fiber Spec(k)×SM is tame.
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APPENDIX B
Excellent and Nagata Rings

We recall Grothendieck’s notion of excellent rings and their relation with Nagata rings. These
concepts go beyond the scope of the thesis. The reason they are presented is to provide, at the
end of this section, a proof of Theorem 3.2.2.

Definition B.0.1. Let R be a domain with quotient field K(R). R is N − 2 or Japanese if for
any finite extension K(R) ⊂ L of fields the integral closure R̄L is finite over R.

Definition B.0.2. Let R be a ring.

▶ R is a Nagata ring if R is noetherian and for every prime ideal p the domain R/p is N − 2.

▶ Let S be a ring. R→ S is essentially of finite type if S is the localization of an R-algebra of
finite type.

Lemma B.0.3. Let R be a Nagata ring. Let R→ S be essentially of finite type with S reduced.
Then the integral closure R̄S is finite over R.

Proof. See [Sta22], Tag [03GH].

Definition B.0.4. Let R be a ring.

▶ R is a G- ring if R is noetherian and for every prime p of R the ring map Rp → R̂p is regular.

▶ R is a J-2 if it is noetherian and for any finite type R-algebra S, the set

Reg(Spec(S)) := {p ∈ Spec(S) |Rpis a regular local ring}

is open.

▶ R is universally catenary if every R-algebra of finite type is catenary.

▶ R is quasi-excellent if R is noetherian, a G− 2 ring and J − 2.

▶ R is excellent if R is quasi-excellent and universally catenary.

Lemma B.0.5. The following types of rings are excellent:

▶ fields,
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▶ noetherian complete local rings,

▶ Z,

▶ Dedekind domains with fraction field of characteristic zero,

▶ finite type ring extensions of any of the above.

Proof. See [Sta22], Tag [07QW ].

Lemma B.0.6. A quasi-excellent ring is Nagata.

Proof. See [Sta22], Tag [07QV ].

After these preliminaries we are now ready to carry a proof of the Theorem 3.2.2, that we state
again now:

Theorem B.0.7. Let Λ be a normal domain, then it is the filtered colimit of a system consisting
of finite type and normal subrings.

Proof. By B.0.5 a finite type ring over Z is excellent. Therefore, any finitely generated subring Rα

of R is excellent and so Nagata by B.0.6. Since R is normal, then the integral closure R̄α
K(Rα),

where K(Rα) is the quotient field of Rα, is contained in R. Since Rα is Nagata and K(Rα) is the
localization of Rα by the prime p = (0), then the Lemma B.0.3 applies and R̄α

K(Rα) is finite over
Rα. Therefore {R̄α

K(Rα)} is a filtering system of finite type normal subrings of R.
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